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We demonstrate that a Bose-Einstein condensate in an optical lattice forms a reconfigurable matter-
wave structure with a band-gap spectrum, which resembles a nonlinear photonic crystal for light
waves. We study in detail the case of a two-dimensional square optical lattice and show that this
atomic band-gap structure allows nonlinear localization of atomic Bloch waves in the form of two-
dimensional matter-wave gap solitons.
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effect of nonlinear localization in band gaps is one of
these properties.

binding approximation or coupled-mode theory often
employed for the study of BEC in 1D optical lattices.
Recent experiments [1–4] have demonstrated that a
Bose-Einstein condensate (BEC) loaded into an optical
lattice is a perfect test ground for a range of fascinating
physical effects. In particular, this is because the effective
potential of an optical lattice can be easily manipulated
by changing the geometry, polarization, phase, or inten-
sity of the laser beams. Because of inherent nonlinearity
of the coherent matter waves introduced by interatomic
interactions, BEC in a lattice potential can form a peri-
odic nonlinear system, which is expected to display rich
and complex dynamics.

On the other hand, propagation of light in dielectric
structures with a periodic variation of the refractive
index is receiving growing attention. Photonic band-gap
(PBG) materials [5]—artificial periodic structures with
a high index contrast —can be used to effectively control
the flow of light. The study of photonic crystals made
of a Kerr nonlinear material, the so-called nonlinear
photonic crystals, has revealed that such structures ex-
hibit a wealth of nonlinear optical phenomena and,
in particular, they can support self-trapped nonlinear
localized modes of the electromagnetic field in the
form of optical gap solitons [6,7]. Dynamically recon-
figurable PBG structures— optically induced refractive
index gratings in nonlinear materials—are now offer-
ing new ways to control light propagation and localiza-
tion [8].

As demonstrated in this Letter, BEC in an optical
lattice can be regarded as a fully reconfigurable analog
of a nonlinear photonic crystal for matter waves—
an ‘‘atomic band-gap’’ (ABG) structure. A deep analogy
between coherent light and matter waves suggests that
the concepts employed in the study of nonlinear PBG
structures can be borrowed for analyzing BEC in optical
lattices. Many properties of ABG structures can po-
tentially be exploited for high-precision control and ma-
nipulation of coherent matter waves in a similar way to
how PBG structures are used to manipulate light. The
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Localized nonlinear excitations of coherent matter
waves—bright atomic solitons— could be very useful
for applications such as atomic interferometry due to their
robust nature. However, their generation has so far been
experimentally achieved only in BECs with attractive
atomic interactions (analogous to self-focusing optical
media) which are unstable against collapse above a small
(�103) critical number of particles.

In theory, a shallow 1D optical lattice can support
bright matter-wave solitons even in repulsive BEC [9]
with large atom numbers. These solitons, described in a
framework a coupled-mode theory [9], are localized on a
large number of lattice wells, and are predicted to exist
only in atomic band gaps. In the opposite case of a deep
lattice, the condensate can be described by the super-
position of ground state modes in the individual wells.
The mean-field treatment of the condensate in this regime
leads to a discrete equation which admits solutions in
the form of stationary modes localized on a few lattice
sites—discrete solitons [10,11], in complete parallel with
spatial solitons in periodic optical structures [12] and
localized modes of atomic lattices [13].

The theory of the nonlinear localized matter waves in
optical lattices is mostly limited to 1D case [14]. However,
as can be deducted from the analogous studies of 2D PBG
structures [6], the nonlinear localization of in BEC in
higher-dimensional lattices is qualitatively different be-
cause both the symmetry and dimensionality of the lat-
tice start to play an important role in the formation and
properties of the band-gap structure and corresponding
nonlinear modes. In this Letter, we analyze the as yet
unexplored problem of the existence and stability of 2D
matter-wave gap solitons of BEC with repulsive inter-
atomic interactions loaded into optical lattices, which
are analogous to localized states of light waves in non-
linear photonic crystals. We show that their accurate de-
scription is possible only within a full mean-field model
of BEC in a periodic lattice potential, beyond the tight-
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FIG. 1. Dispersion diagram for atomic Bloch waves in a 2D
lattice in the reduced zone representation: shaded, first three
energy bands; numbered, band gaps (V0 � 5:0). Dashed, the
line � � V0. Right top: contour plot of the lattice potential
in Cartesian space, black shading corresponds to potential
minima. Right bottom: the first Brillouin zone of the 2D lattice
in the reciprocal lattice space; marked are the high-symmetry
points of the irreducible zone.
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The dynamics of a three-dimensional BEC cloud
loaded into a two-dimensional optical lattice can be
described by the Gross-Pitaevskii (GP) equation for the
macroscopic wave function, ��r; t� of the condensate,
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This equation has been made dimensionless by using the
natural length, time, and energy scales of the optical
lattice. The characteristic length scale in this model,
aL � k�1

L � d=, defines the size of a single well of the
lattice potential through the lattice constant that depends
on the laser wavelength as d � �=2. The depth of the
lattice potential, measured in the lattice recoil energy
EL � �h2=�2ma2L�, is proportional to the laser intensity
and can be varied from 0 to �20EL in experiment. The
characteristic frequency scale is !L � EL= �h. The inter-
atomic interactions are characterized by the coefficient
�3D � 8�as=aL�, where as is the s-wave scattering
length, positive for repulsive interactions.

In the simplest case of a square optical lattice, the
combined potential of the lattice and magnetic trap,
V�r� � VL�r� � VT�r�, can be written as V�r� �
V0�sin

2x� sin2y� �!2
i r

2=2, where V0 is the amplitude
of the optical lattice, and !i are the (normalized) trap-
ping frequencies in the corresponding directions. The
current experiments with 2D optical lattices are per-
formed with a strongly anisotropic BEC cloud, with the
ratio of the trapping strengths � � !x=!y;z � 10�1 [2].
To simplify our analysis, we assume that the relatively
weak magnetic confinement characterized by trap fre-
quencies !i has a small effect on the stationary states
of the condensate in the lattice. Under this assumption,
the trap component of the confining potential in the
lattice plane can be neglected, and the model can be
reduced to a two-dimensional GP equation by assuming
separable solutions of the form,  �r; t� � ��z� �x; y; t�
where the function ��z�, describing the condensate in the
direction of the tight confinement, perpendicular to the
lattice, is a solution of the 1D quantum harmonic oscil-
lator problem, with the normalization conditionR
�2�z�dz � 1. Then the standard dimensionality reduc-

tion procedure [15], leads to the following equation for
the 2D condensate wave function in the 2D lattice poten-
tial:
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where r2
? � @2=@x2 � @2=@y2, VL�r� 
 VL�x; y� is the

periodic potential of the optical lattice, and the wave
function is rescaled as  !  

��������
�2D

p
, with �2D � �3D=
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2

p
.

Spectrum of atomic Bloch waves in the optical lattice
can be found by exploiting the analogies with the theory
of single-electron states in crystalline solids. Stationary
states of the condensate in an infinite periodic potential
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of a 2D optical lattice are described by solutions of Eq. (2)
of the form:  �r; t� � ��r� exp��i�t�, where � is the
chemical potential, corresponding to the energy level of
the stationary state in the lattice potential. The case of
noninteracting condensate formally corresponds to Eq. (2)
being linear in  . According to the Bloch theorem, the
stationary wave function can then be sought in the
form ��r� � uk�r� exp�ikr�, where the wave vector k
belongs to a Brillouin zone of the square lattice, and
uk�r� � uk�r� d� is a periodic (Bloch) function with
the periodicity of the lattice. For the values of k within
an nth Brillouin zone, the dispersion relation for the 2D
Bloch waves, �n�k�, is found by solving the following
linear eigenvalue problem

�
1

2
��ir? � k�2 � VL�r�

�
un;k � �n�k�un;k: (3)

The eigenvalue problem (3) is simpler than a general 2D
problem due to the separability of the lattice potential.
The typical dispersion relation for the energy of the Bloch
states in the lowest Brillouin zones is shown in Fig. 1 for a
moderate value of the lattice depth V0 � 5. The disper-
sion diagram is presented in the reciprocal lattice space,
and the dispersion relations are calculated along the
characteristic high-symmetry directions of the irreduc-
ible Brillouin zone (see Fig. 1, bottom right). It can be
seen that the absolute bands and gaps are determined by
the spectra of the Bloch waves in the middle (point �) and
on the edge (point M) of the Brillouin zone.

To understand how the variation in the lattice parame-
ters affects the band structure, we note that, owing to
the scaling properties of the model, any increase in the
well spacing, aL, translates into decreasing the well depth
V0. Thus the global behavior of the band structure can
be understood by examining the Bloch wave spectrum as
160407-2



FIG. 3 (color online). Peak amplitude, �0 
 ��0; 0�, of the
fundamental gap soliton in the first gap (V0 � 5:0); shaded, the
first band; dashed, the line � � V0. Below: Spatial structure of
the gap solitons (a) near the high-energy edge of the first band,
� � 3:5, and (b) at the top of the lattice potential, � � 5:0.
Contour plots on the 3D plots (left) show the structure of
the lattice potential, darker contours correspond to potential
minima. Potential contours on the right are guides to the eye.
Insets: the cross sections of the localized modes and the
potential along the line �x; 0�.
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FIG. 2. Band-gap structure of the atomic Bloch-wave spec-
trum as a function of the lattice amplitude V0. Shaded: Bloch-
wave bands; numbered, gaps. Dashed, the line � � V0.
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a function of the lattice depth. Figure 2 presents the
chemical potentials corresponding to the atomic Bloch
waves at the edges of the absolute bands plotted as
functions of V0. The dashed line � � V0 (dashed line
in Fig. 1) separates the quasiunbound (� > V0) and
strongly bound (�< V0) condensate states in the lattice
(see also Ref. [16]). By varying the interwell separation
or the amplitude of the lattice, different regimes of the
atomic band-gap structure can be accessed. The tight-
binding regime of the condensate dynamics corresponds
to the domain V0  V�

0 � �, where the bands ‘‘collapse’’
to discrete levels of bound states in a single isolated well
(see Fig. 2). The narrow-gap regime of a shallow lattice,
where the coupled-mode theory applies, is found for the
opposite case, V0 � V�

0 .
The study of the 1D atomic band-gap structures [15,17]

indicates that the correct structure and dynamical prop-
erties of the nonlinear localized modes can be revealed
only through the analysis of the full continuous mean-
field GP model that bridges the gap between the coupled-
mode theory and discrete tight-binding approach. One
promising development in approximate analysis would
be generalization of the Wannier function formal-
ism [18] to the 2D case. However, the complexity in-
volved in the generation of optimally localized higher-
dimensional Wannier functions [19] may not provide
significant advantage compared with the direct solution
of the model Eq. (2).

Here, we find spatially localized stationary solutions of
Eq. (2) numerically. Our numerical procedure involves
minimization of the functional N �

R
fyfdr, where

f��� � �r2
? ��� VL�r� � j�j2��, by following a de-

scent technique with Sobolev preconditioning [20]. The
minimization procedure yields a stationary state when
N��� � 0. Previous applications of this method to the
analysis of optical solitons has shown that it is suitable for
tackling both the fundamental and higher-order nonlin-
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ear localized modes. Our numerical method is indepen-
dent of the lattice symmetry; it offers a versatile tech-
nique for finding and analyzing nonlinear localized
modes in a range of different band-gap structures, and
for making accurate predictions about their density, de-
gree of localization, and spatial structure in different
areas of the parameter space.

We have identified different families of matter-wave
gap solitons of the repulsive BEC in the 2D atomic band-
gap structure. These solitons can exist in all gaps, exclud-
ing the semi-infinite gap of the spectrum (marked by
1 in Figs. 1 and 2) below the first band. We note in passing
that only conventional self-focusing of BEC with attrac-
tive interactions is possible in the semi-infinite gap. The
change in the peak amplitude of the lowest-order ‘‘fun-
damental’’ gap solitons across the first gap, along with
their spatial localization properties, are demonstrated in
160407-3
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FIG. 4. Spatial structure of the higher-order gap solitons
formed by two (left) out-of-phase and (right) in-phase funda-
mental modes (V0 � 5:0, � � 4:0). Filled contours show the
lattice potential; dark shading corresponds to potential minima.
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Fig. 3, for V0 � 5. Gap solitons of repulsive BEC branch
off the lower-energy (i.e., smaller values of �) gap edge
(see Figs. 3, top). Near this edge, i.e., at low particle
numbers and amplitudes, they are weakly localized.
Further within the gap, the localized mode of the BEC
contains larger numbers of atoms, and has a strongly
localized central peak [see Figs. 3(a) and 3(b)]. Near
the linear tunnelling threshold, �� V0, the nonlinear
localized states develop extended tails in the orthogonal
directions �x; y�, along which the tunneling is assisted
by the lower interwell barrier heights (compared to 2V0

in diagonal directions). Although the stability analysis
of the states localized on the extended background (for
� > V0) is difficult due to the large computational do-
main, we have confirmed that strongly localized 2D
modes are dynamically stable. In the lattice geometry
under consideration, the line � � V0 lies within the first
gap (marked 2 in Figs. 1 and 2), and only localized modes
within this gap have been analyzed.

The higher-amplitude gap solitons have a nontrivial
structure of the tails [see Fig. 3(b)], i.e., the zeros of the
matter-wave are centered within individual lattice wells
(see Figs. 3, insets), rather than on the potential maxima.
This structure is determined by the spatial structure of
the Bloch wave at the lower-energy edge of the second
band (point M in Fig. 1), and cannot be described within
the framework of the discrete model.

We have also found families of higher-order gap modes
that can be identified as bound states of the fundamental
gap solitons. These states can be centered on the lattice
potential minima or maxima, similarly to higher-order
‘‘odd’’ and ‘‘even’’ states in 1D lattices [15], and can
exhibit symmetry-breaking instabilities. Two examples
of the lowest-order in- and out-of-phase odd modes,
centered on a lattice maximum, are shown in Fig. 4.

The crucial issue of the potential observation of 2D
gap solitons is the stability of the 2D localized state
in a 3D BEC cloud, i.e., dynamical stability of the 3D
state ��x; y; z; t� with the initial condition given by
��z���x; y�, where ��x; y� is the two-dimensional sta-
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tionary gap soliton. The analysis of stability of 2D
solitons in a 3D BEC cloud, which will provide clues
for possible experimental observation of multidimen-
sional gap solitons, is the subject of our separate study.

In conclusion, we have demonstrated that the interac-
tion of BEC with the lattice potential is analogous to the
light scattering by a nonlinear photonic band-gap struc-
ture. We have studied the properties of two-dimensional
atomic band-gap structures and demonstrated the exis-
tence of gap solitons, the spatially localized states of BEC
existing in the gaps of the matter-wave spectrum. We
believe the analogy between the physics of BEC in optical
lattices and photonic crystals can be useful for revealing
many novel features of the matter-wave dynamics in
reconfigurable atomic band-gap structures.
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