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Hamiltonian-versus-energy diagrams in soliton theory
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Parametric curves featuring Hamiltonian versus energy are useful in the theory of solitons in conservative
nonintegrable systems with local nonlinearities. These curves can be constructed in various ways. We show
here that it is possible to find the Hamiltonian~H! and energy~Q! for solitons of non-Kerr-law media with local
nonlinearities without specific knowledge of the functional form of the soliton itself. More importantly, we
show that the stability criterion for solitons can be formulated in terms ofH and Q only. This allows us to
derive all the essential properties of solitons based only on the concavity of the curveH vs Q. We give
examples of these curves for various nonlinearity laws and show that they confirm the general principle. We
also show that solitons of an unstable branch can transform into solitons of a stable branch by emitting small
amplitude waves. As a result, we show that simple dynamics like the transformation of a soliton of an unstable
branch into a soliton of a stable branch can also be predicted from theH-Q diagram.
@S1063-651X~99!09805-0#

PACS number~s!: 42.65.2k, 47.20.Ky, 47.27.Te
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I. INTRODUCTION

The Hamiltonian~H! is one of the fundamental notions i
mechanics@1# and more generally in the theory of conserv
tive dynamical systems with a finite~or even infinite! num-
ber of degrees of freedom. The Hamiltonian formalism h
turned out to be one of the most universal in the theory
integrable systems@3# and nonlinear waves in general@2#. In
the case of nonintegrable systems, the Hamiltonian ex
whenever the system is conservative, and it is useful
stability analysis@4,5#. It turns out that the most useful ap
proach in soliton theory of conservative nonintegra
Hamiltonian systems is a representation on the plane of c
served quantities: Hamiltonian versus energy@6#. A three-
dimensional~3D! plot ~Hamiltonian-energy-momentum! is
useful when dealing with two-parameter families of solutio
@7#.

Recently, Hamiltonian-versus-energy curves have b
used effectively to study families of solitons and their pro
erties, viz., range of existence, stability, and general dyn
ics. Specific problems considered up to now include sc
solitons in non-Kerr media@6#, vector solitons in birefringen
waveguides@8#, radiation phenomena from unstable solit
branches@9#, optical couplers@10#, general principles of
coupled nonlinear Schro¨dinger equations@11,12#, parametric
solitons in quadratic media@13#, and the theory of Bose
Einstein condensates@14#. Moreover, Hamiltonian-versus
energy curves are useful not only for studying single-soli
solutions, but also for analyzing the stability of bound sta
~when they exist! @15#. Other examples could be mentione
as well.

In most publications, soliton families have been stud
using plots of energy versus propagation constant. Th
curves allow the soliton families to be presented graphic
and, moreover, allow predictions of their stability propertie
PRE 591063-651X/99/59~5!/6088~9!/$15.00
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We believe that the first example of their application w
presented in@16#. Kusmartsev@17# was the first person to
understand the importance of projecting curves on the pl
of conserved quantities. He applied catastrophe theory a
mapping technique to represent soliton families with d
grams and to show that the critical points on these diagra
define the bifurcations where the soliton stability chang
However, the qualitative analysis in the work has been s
plified and it missed some important details. In particular,
infinite-dimensional systems, the parametrization of wa
packets using two parameters (v andk in @17#! is valid only
in the close vicinity of stationary solutions where the Ham
tonian has an extremum. For more general solutions and
the evolution of a wave packet from an arbitrary initial co
dition, the use of the above parameters may fail. On the o
hand, at the extremal points, more definite parametrizatio
needed.

In this work, we use a direct approach to analyze
H(Q) soliton curves and, additionally, we enhance the c
cept with a stability theorem. We believe that this theore
turns the employment ofH(Q) curves into a powerful tool
for analyzing soliton solutions, their stability, and their d
namics.

Usually the Hamiltonian and energy for solitons of no
Kerr media are found by substituting the explicit solito
form into the appropriate integrals. However, the expli
forms are not always available, and furthermore, not alw
necessary. Sometimes, it is sufficient to know that the f
damental soliton can be represented as a single-peak fun
which decreases to zero at infinity. Then the important pr
erties of solitons—range of existence, stability, and sim
dynamics—can be predicted from our analysis. In particu
in this paper, we prove a theorem which relates the conca
of the H-Q curves to the stability of the solitons. We con
sider several examples of local nonlinearities and apply
6088 ©1999 The American Physical Society
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general principles to these media. The main advantage
our approach are its simplicity, clarity, and the fact that
provides the possibility of predicting simple dynamics
evolution for solitons on unstable branches.

II. ANALYSIS

For simplicity, we consider in this paper only scalar wa
fields c(t,j). The nonlinear Schro¨dinger equation~NLSE!
for a general nonlinearity law is@4–6#

icj1
1

2
c tt1N~ ucu2!c50. ~1!

In the case of temporal solitons,t is the retarded time vari
able @while in the case of spatial (111)D solitons,t is a
transverse spatial coordinate#, j is the longitudinal distance
andN is the nonlinearity law. It indicates that the change
refractive index depends on the local intensity. Localiz
solutions satisfy the ansatz

c~ t,j!5 f ~ t !exp~ iqj!, ~2!

where f (t) is a real field profile, andq is the propagation
constant.

The total energy associated with an arbitrary soluti
c(t,j), is

Q5E
2`

`

I dt, ~3!

where the intensity isI 5ucu25 f 2. Strictly speaking, in spa
tial problems,Q is the power or power flow. In problem
related to pulse propagation in optical fibers, wheret is re-
garded as a retarded time,Q is the total pulse energy. Fo
simplicity, we refer toQ as energy throughout this work
keeping in mind the above remark. For localized solutio
@Eq. ~2!#, Q is finite and it is one of the conserved quantiti
of Eq. ~1!.

Similarly, the Hamiltonian is another conserved quanti

H5E
2`

` F1

2
f t

22F~ I !Gdt, ~4!

with F given by

F~ I !5E
0

I

N~ I 8!dI8.

The Hamiltonian plays a major role in the dynamics of t
infinite-dimensional system. Namely, stationary solutions
Eq. ~1! can be derived from the Hamiltonian using the var
tional principledH50.

Now, substituting Eq.~2! into Eq. ~1! and integrating
once, we have

f t
252~qI2F !. ~5!

Using Eqs.~4! and ~5!, it is easy to show that

H5qQ22 K, ~6!
of
t

d

,

s

:

f
-

whereK5*2`
` F(I )dt. The point now is that we can conve

from integrals in the time domain (2`,t,`) to integrals
in terms of the intensity (0,I ,I m whereI m is the maximum
pulse intensity!. We suppose that the soliton profile is
single maximum solution of Eq.~1! with no nodes. In other
words, we deal with the fundamental nonlinear ‘‘mode’’
Eq. ~1!. We then do not need to solve the modified NLS
explicitly. We use the fact that

dI

dt
52 f f t522AIA2~qI2F ! ~7!

(t.0) to obtain

QA2q5E
0

I m dI

A12J~ I !
5I mE

0

1 dy

A12J~ I my!
, ~8!

where we have definedJ(I )5F(I )/qI and introduced the
change of variabley5I /I m for convenience. We note tha
J(I m)51, so that the conditionJ(I )<1 determines the ex
istence regime of soliton solutions. Furthermore,

KA2

q
5E

0

I m J~ I !dI

A12J~ I !
. ~9!

ThenQq2K simplifies toS/A2, where

S5AqE
0

I mA12J~ I !dI5I mAqE
0

1
A12J~ I my!dy.

~10!

Finally

H5A2S2qQ. ~11!

This expression will be used here to calculateH-versus-Q
curves explicitly. It is easy to show that in the case of a K
medium

H~Q!52
Q3

24
. ~12!

III. STABILITY THEOREM

One of the advantages of usingH-Q curves is that they
can predict the stability of solitons. It is apparent that,
there is more than one branch at a givenQ, then the lowest
branch ~i.e., the one with the minimum Hamiltonian! is
stable. This conclusion follows directly from the nature
the Hamiltonian and does not need a special proof. Howe
we will show that the stability condition can take a mo
direct form. We now prove a useful theorem in this rega
For solitons in media with local nonlinearities, we have, u
ing the equations in Sec. II,

dS

dq
5

1

2q
~S1KA2!. ~13!

Hence
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dH

dq
52q

dQ

dq
. ~14!

Then it follows that

dH

dQ
52q. ~15!

If we start atq50 and traverse the curve so thatq is increas-
ing, then the magnitude of the slope always increases.
thermore,

d2H

dQ2
5

21

dQ/dq
. ~16!

The denominator on the right-hand side defines the stab
of the lowest-order modes~fundamental solitons! @4,19–23#.
Now we can see that stability is directly related to the co
cavity of theH-versus-Q curve. Namely, the solitons with
H9(Q),0 are stable while those withH9(Q).0 are un-
stable.

Another consequence of Eq.~14! is that

dH

dq
50⇒ dQ

dq
50 or q50. ~17!

Thus if Q has a stationary point, then so doesH. For q.0,
this produces a cusp on theH-Q diagram. However, we can
havedH/dq50 with q50 anddQ/dqÞ0. This produces a
rounded maximum on theH-vs-Q plot and not a cusp.

Clearly, from Eq.~14!, if we haveq.0, thenH decreases
asQ increases, meaning thatdH/dQ,0. On the other hand
if q,0 is allowable, thenH andQ have the same slope, s
that dH/dQ.0.

Thus, we can conclude the following, for the lowest-ord
modes.

~1! Solitons withH9(Q),0 are stable while those with
H9(Q).0 are unstable.

~2! Stability changes only at cusps.
This criterion for stability can be more general th

dQ/dq.0, because it involves only conserved quantit
which always exist in conservative systems; this is in c
trast to q, which may not be defined uniquely. This is a
important theorem and we illustrate its application in seve
of the following examples. Moreover, we also consider w
happens to unstable solitons if they are excited in the sys

IV. EXAMPLES

A. Power-law nonlinearity

This nonlinearity has been studied in relation to the s
focusing singularity@18#. HereN5I b, with b.0, so thatJ
5(I /I m)b. Usually, we haveb,2 so that the solitons do no
collapse~in the one-dimensional case!. Then

S5
bQA2q

b12
, ~18!

and
r-

ty

-

r

s
-

l
t
m.

-

H~q,Q!5
b22

b12
qQ. ~19!

We define

c~b!5FA2

p

bG~1/b11/2!

~11b!1/bG~1/b!
G 2b/(22b)

, ~20!

whereG is the gamma function. ThenQ is given by

Q5F q

c~b!G
(22b)/2b

~21!

and

H~Q!5c~b!
b22

b12
Q(21b)/(22b). ~22!

Thus, theH-versus-Q curve can be calculated without an
knowledge of the soliton profile itself. The curvesH(Q) are
shown in Fig. 1 for several values of the parameterb. When
b51 ~Kerr medium!, thenc(b)51/8 andH(Q)52Q3/24,
in agreement with Eq.~12!.

Let us consider stability. The derivative,

dH

dQ
52c~b!Q2b/(22b)52q, ~23!

as required, and

d2H

dQ2
52

2bc~b!

~22b!
Q(3b22)/(22b)52

1

Q8~q!
.

Solitons in these media are always stable. Note that w
0,b,2, these functions are single valued, so that all s
tons of the family are stable andH9(Q) is always negative.
Thus the curve is always concavedown. The latter fact is
important when considering inelastic interactions betwe
solitons@15#.

Clearly, b52 represents the borderline case between
concave downwards curves (b,2) and the concave upward
curves (b.2). In fact, forb52 the curves reduce to a sing
point (Q5A3/2p/2'1.924,H50), and this is indepen-
dent ofq. In this case, the exponential growth rate coefficie

FIG. 1. Hamiltonian versus energy for power-law nonlinear
for various values of the parameterb.
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is zero and the stability~linear growth! would have to be
considered separately, as there is no concept of concavit
a single point.

Although the actual field profile has not been used, for
sake of completeness, we give it here:

f ~ t !5@q~11b!#1/2bsech1/b~bA2qt!]. ~24!

If we setb51, then we obtain

f ~ t !5A2q sech~A2qt!, ~25!

which is the well-known Kerr-law soliton.

B. Log-law nonlinearity

Nonlinearity models involving logarithm-type laws allo
us to find a multiplicity of exact solutions of Eq.~1! @24,25#.
Nevertheless, these models remain generally nonintegr
in the sense that the inverse scattering technique canno
applied to them. In this case, we choose the modeN
5 ln(b2aIa)5a ln(b2I), where a.0, so that I m5b22exp(1
1q/a). Then

S5
aQ

A2
, ~26!

and

H~q,Q!5~a2q!Q, ~27!

while Q is Q5I mAp/(2a), which is proportional to
exp(q/a). Thus

H~Q!5aQF22 lnS b2QA2a

p D G . ~28!

The effect described in Sec. III shows up clearly with th
log-law example. Here

dH

dq
52q

dQ

dq
52

q

ab2
A p

2a
expS 11

q

aD . ~29!

In this case,H has a maximum whenq50, anddQ/dq is not
zero at this parameter value. Hence, theH-Q plot features a
rounded maximum~and not a cusp! at this point, as is clea
from Fig. 2.

As seen in the figure,dH/dQ.0 for all values ofQ be-
low the maximum inH ~i.e., 2`,q,0), while dH/dQ
,0 for all values ofQ above the maximum inH ~i.e., q
.0). Thus no cusps appear in this example.

The slope of the curve of Eq.~28! is

dH

dQ
5a@12 ln~b2QA2a/p!#52q ~30!

so thatH9(Q)521/Q8(q)52a/Q, which is always nega-
tive. Some examples are shown in Fig. 2. Note that
Hamiltonian for these curves increases at low energies be
decreasing at high energies. These curves are always
cavedown for any a, so the solitons are always stable.
for

e

le
be

e
re

on-

C. Cubic-quintic nonlinearity law

For an arbitrary functionN(I ), the first two terms in the
Taylor series giveN5I 1nI 2. This nonlinearity can be ob
tained by using two separate dopants@26#. This model gives

J(I )5(I /q)( 1
2 1nI /3). Let us consider separately the tw

opposite signs ofn.

1. n positive case

Now n.0, so it is convenient to definea54Anq/3
[tan(A)(.0). Thus 0,nq,`. Then

Q5
3~secA21!

4nA2q
E

0

1 dy

A12yA11y tan2~A/2!

5A 3

2n
arctan~a!. ~31!

Now, using Eq.~10! we find

S5
3Aq

4n
~secA21!E

0

1
A12yA11y tan2~A/2!dy,

~32!

so that

S5
3A3

32n3/2
@~11a2!arctan~a!2a#. ~33!

Finally, using Eq.~11! we obtain

H~q!5
3A6

32n3/2
@arctan~a!2a#. ~34!

So, using Eq.~14!, we find

dH

dq
52q

dQ

dq
52

A2q

11a2
. ~35!

FIG. 2. Hamiltonian versus energy for the logarithmic-law no
linearity model of this section for various values of the paramet
a andb.
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Thus, if q.0, the slopesH8(q) and Q8(q) have opposite
signs, so that if eitherQ or H is increasing then the other i
decreasing.

We can now giveH explicitly in terms ofQ:

H~Q!5
3Q

16n
2

3A6

32n3/2
tanS QA2n

3 D . ~36!

Differentiating shows that

dH

dQ
52

3

16n
tan2~QA2n/3!52q

and

d2H

dQ2
52~11a2!Aq/25

21

Q8~q!
.

2. n negative case

Here n,0, so we letb54A2nq/3[tanh(B)(.0). Thus
0,b,1, so that solitons can exist~only! within the range
2 3

16 ,nq,0. Then

Q5
3~sechB21!

4nA2q
E

0

1 dy

A12yA12y tanh2~B/2!

5A23

2n
arctanh~b!. ~37!

The energy results@Eqs. ~31! and ~37!# agree with those
calculated using the field solutions in Sec. 4.5 of@6#.

Now, again using Eq.~10! we get

S5
3Aq

4n
~sechB21!E

0

1
A12yA12y tanh2~B/2!dy,

~38!

so that this timeS is given by

S5
3A3

32nA2n
@~12b2!arctanh~b!2b#. ~39!

From Eq.~11! we get

H~q!5
3A6

32nA2n
@arctanh~b!2b#, ~40!

H~Q!5
3Q

16n
1

3A6

32~2n!3/2
tanhS QA22n

3 D . ~41!

We note that Eq.~41! agrees with Eq.~4.30! in @6#, with the
latter being derived in quite a different manner. Taking t
limit n→0 in Eqs.~36! and ~41! again produces the correc
Kerr-law limit, H52Q3/24.

Curves plotted from Eqs.~36! and~41! are shown in Fig.
3. Whenn is positive, each curve has a maximum possi
Q. Whenn is negative, there are no limits along either va
able. In both cases,H9(Q),0, so all these solitons ar
stable.
e

e

D. Higher-order polynomial law

A more general case of a Taylor expansion has been c
sidered by Kaplan@27#. Here, we can, to some extent, ge
eralize the preceding section by usingN5I 1nI 21gI 3. Thus

J~ I !5
I

q S 1

2
1

nI

3
1

gI 2

4 D . ~42!

Here I m is the first ~positive! root of 3gI m
3 14nI m

2 16I m

212q. This can be written in an explicit form.
Now 12J(I my) is a cubic polynomial iny and it hasy

51 as a root. Hence 12J(I my)5(12y)(11ay1by2). Ex-
panding shows thata512I m/2q and b5gI m

3 /4q. Then we
find

Q5
I m

A2q
E

0

1 dy

A12yA11ay1by2
, ~43!

which can be expressed in terms of an ellipticF function,
and

S5I mAqE
0

1
A12yA11ay1by2dy, ~44!

which can be written in terms of ellipticF andP functions.
We can make a simplification by writing 11ay1by2

5(12r 1y)(12r 2y) where r 1 ,r 25 1
2 @2a6Aa224b#. Of

course,r 1 and r 2 may be complex, but if they are real the
cannot be greater than 1. Then

Q5
I m

A12r 2

A 2

qr1
FS arcsin~Ar 1!,

r 22r 1

r 1~r 221! D . ~45!

In principle, this result may give bistable behavior of solito
@27#.

E. Saturable nonlinearity law

Here we use a nonlinearity model which has been con
ered in@28#, viz.,

N5k@12~11I /g!22#, ~46!

whereg is the saturation parameter andk is a constant. This
nonlinearity does not allow explicit solutions forf (t). How-

FIG. 3. Hamiltonian versus energy for cubic-quintic nonlinea
ity for various values of the parametern.
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ever, H(Q) curves can be calculated analytically using t
above formalism. We obtain simple results with our a
proach, as

F5
I 2k

I 1g
, J~ I !5

Ik

q~ I 1g!
, and I m5

qg

k2q
.

Then the integrals can be calculated analytically:

Q5
gk

2A2~k2q!3/2Fp2 1
2

k
AqAk2q2CG ~47!

and

S5gF k

4Ak2q
~p22C!2AqG , ~48!

where

C5arctanF k22q

2AqAk2q
G . ~49!

ThenH is found from Eq.~11!, as before.
In general,Q increases withq while H decreases withq.

Parametric plots~for 0,q,k) are shown in Fig. 4. They
decrease monotonically for any positiveg and are concave
down, implying stability.

F. Dual power-law nonlinearity

This nonlinearity is given byN5I b1nI 2b. When n is
positive, the refractive index increases monotonically withI.
Qualitative behavior ofH(Q) curves is then similar to the
one considered in the preceding section. We considern,0,
where theN(I ) dependence is not monotonic and we c
expect qualitatively new effects. We letb52(1
1b)A2nq/(2b11)[tanh(B) (.0). Thus 0,b,1, so that
solitons can exist~only! within the range

2
112b

4~11b!2
,nq,0.

Then

FIG. 4. Hamiltonian versus energy for saturable nonlinearity
three values of the parameterg.
-

Q5
I m

bA2q
E

0

1 y1/b21dy

A12yA12y tanh2~B/2!
, ~50!

where

I m5F ~112b!@sech~B!21#

2n~11b! G1/b

, ~51!

so that

Q5
I m

b
A p

2q

G~1/b!

G~ 1
2 11/b!

FS 1

2
,
1

b
;
1

2
1

1

b
;zD , ~52!

whereF is the hypergeometric function andz5tanh2(B/2).
With the special caseb51, Q reduces to

Q5I mA2

q
FS 1

2
,1;

3

2
;zD5I mA 2

qz
arctanh~Az!, ~53!

which reduces to the form ofQ given in the earlier section by
Eq. ~37!.

Now, again using Eq.~10!, we get

S5
I mAq

b E
0

1

y1/b21A12yA12y tanh2~B/2!dy, ~54!

so thatS is given by

S5
I mAqp

2b

G~1/b!

G~ 3
2 11/b!

FS 2
1

2
,
1

b
;
3

2
1

1

b
;zD . ~55!

Whenb51, S agrees with Eq.~39!. Whenb52, the hyper-
geometric functions reduce to elliptic integrals (K andE).

Now we have explicit forms forQ, S, and henceH. In
general, whenb,2, Q increases andH decreases monotoni
cally with q, so that the parametricH versusQ plot decreases
monotonically asq increases and is always concave dow
Hence, the solitons of the whole family are stable.

For b.2, however,Q has a minimum andH has a maxi-
mum atq.0, thus producing a cusp in theH-versus-Q plot
~see Fig. 5!. Note that solitons exist only above some thres
old energy in this case. The important conclusion from t
case is that the upper branch should be unstable, becaus
Hamiltonian is concave upwards while the lower bran
should be stable as it is concave downwards. Numer
simulations similar to that described in Sec. V show that t
is indeed the case.

G. Triple power-law extension

We can also takeN5I b1nI 2b1gI 3b. If we let n5I m
b ,

then we can findn, and henceI m , by solving the cubic
equation

n

b11
1

n

2b11
n21

g

3b11
n35q. ~56!

Then

r
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Q5
I m

bA2q
E

0

1 y1/b21dy

A12yA12r 1yA12r 2y
, ~57!

where the roots of the cubic polynomial are 1, 1/r 1, and 1/r 2
as before. Again, ifr 1 andr 2 are real then each must be le
than 1.

Similarly

S5
I mAq

b E
0

1

y1/b21A12yA12r 1yA12r 2y dy. ~58!

This may put an additional branch on theH-Q curve, leading
to bistable behavior.

As noted in Sec. III, the magnitude of the slope of t
curve on the (H-Q) diagram increases as we move along
curve in the direction of increasingq. For example, in Fig.
6~a!, q50 corresponds to the origin, and the magnitu
udH/dQu increases as we move towards the cusp; this va
continues to increase once we move onto the upper bra
(q.0.25) whereH is increasing.

In Fig. 6~b! small q corresponds to the highQ values on
the right of the diagram. Again,udH/dQu increases asq in-
creases and we approach the first cusp, which is the left c
ThenudH/dQu increases again withq as we move along the
lowest branch~i.e., the stable one!. When we pass the righ
cusp,H increases andudH/dQu once again continues to in
crease withq.

V. SOLITON TRANSFORMATION

The main point of the above calculations is that the ex
solution for the soliton profile is not needed for finding t
H(Q) curve. Indeed, the explicit forms of solutionsf (t)
have not been used in these calculations. Nevertheless
now present an explicit solution for the profilef (t), for the
case of dual-power-law solitons in order to investigate
dynamics and verify the usefulness of theH-Q diagram in
predicting stability~instability! and pulse behavior.

Thus, forN5I b1nI 2b ~Sec. IV F!, we have the ordinary
differential equation:

FIG. 5. Hamiltonian versus energy for dual-power-law nonl
earity for the values of the parametersb55/2 andn521. The
dotted arrow shows a transformation which occurs from the
stable branch to the stable one, due to the soliton’s interaction
radiation. The cusp occurs atq5qc50.0492 and corresponds to th
soliton’s minimum energy ofQ52.51 and maximum Hamiltonian
viz., H50.007 83.
e

e
e
ch

p.

t

we

e

1

2
f tt2q f1 f ~ f 2b1n f 4b!50. ~59!

The exact solution is

f ~ t !5@h~ t !#21/2b, ~60!

where

h~ t !5
1

2q~11b!
@11s~b!cosh~2bA2qt!#, ~61!

with s(b) defined as

s~b!5A11
4qn

~112b!
~11b!2 ~.0!. ~62!

Using the definitions of previous sections, we note that in

,0, thens5A12b25sech(B) (,1), while if n.0, then

s5A11a25sec(A) (.1). Using Eq.~60!, we see that

I m5@ f ~0!#25F ~112b!~s~b!21!

2n~11b! G1/b

. ~63!

For n,0, this clearly agrees with the form found@Eq. ~51!#
in the preceding section.

-
th

FIG. 6. Hamiltonian versus energy for triple-power-law nonli
earity ~Sec. IV G! for the values of the parametersn521 andg
50.5. ~a! b53/2. Here the lower branch is stable and the upp
branch is unstable.~b! b55/2. Here the lowest branch (0.06,q
,0.17) is stable and two upper branches are unstable. N
dH/dQ52q at each point.
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To illustrate the usefulness of theH(Q) diagrams in pre-
dicting dynamics, let us consider a simple example. In Fig
the upper unstable branch of solitons corresponds to
range 0,q,qc . The lower stable branch corresponds to t
interval qc,q,qmax56/49. The cusp appears atq5qc
50.0492. We have made numerical simulations based on
~1! with the initial conditions corresponding to the stationa
solutions of the unstable branch. We used the Cra
Nicholson technique, in conjunction with a Newton iterati
scheme, to solve the nonlinear equation. We used z
boundary conditions and absorbing layers close to
boundary in order to remove the small amplitude radiat
waves. An example of propagation is shown in Fig. 7~a!.
These simulations confirm the instability of the upp
branch. We start with the exact solution, Eq.~60!, as the
initial condition, and takeq50.005, which corresponds t
Q52.936. Initial symmetric perturbations are inserted
multiplying the function by a coefficient slightly differen
from one, namely, 1.000 01. The results were qualitativ
the same even without this coefficient, due to the unavo
able deviations of the profile from the exact one in the n
merical discretization. This soliton is unstable, and due

FIG. 7. ~a! Evolution of an unstable soliton. The result of th
evolution is shown schematically by the arrow in Fig. 5.~b! Initial
(j50) and final (j.1400) soliton profiles. Initially the stationar
soliton solution (q50.005) is unstable, but it evolves into a solito
on the stable branch while emitting small amplitude radiation wa
@note ripples in~a!#.
,
e

e

q.

k-

ro
e
n

r

y
-
-
o

interaction with radiation, it evolves into a soliton of th
stable branch. The initial and the final soliton profiles a
shown in Fig. 7. The final state, after the radiation wav
have dispersed, is a soliton with parametersq50.094 and
Q52.69. The shape stays practically the same aftej
51400, thus confirming its stability. The course of the abo
transformation is clearly seen in Fig. 7. It is represented
the dotted arrow in Fig. 5. A physically similar process h
been considered analytically in@9# for solitons in birefrin-
gent fibers. As a general rule, this analysis shows that
transformation always takes place from an upper right po
on theH(Q) diagram to a lower left point on the diagram
Hence the direction of the arrow in Fig. 5 must be down a
to the left.

The instability eigenvalues of the linearized equations
the upper soliton branch must be complex, as they have
parts which correspond to the deviation from the unsta
soliton and imaginary parts which correspond to interactio
with radiation. This type of complex eigenvalue has be
found for a different problem in@29#. Note that complex
eigenvalues have been proved to exist for Hamiltonian s
tems in@30–32#.

VI. CONCLUSION AND DISCUSSION

We have reformulated soliton stability principles by pro
ing a general theorem for stability in terms ofH andQ, and
we have shown that parametric curves of Hamiltonian ver
energy are useful in the theory of solitons in conservat
nonintegrable systems. In particular, for lowest-order s
tons, concave down implies stability, while concave up c
responds to instability. Furthermore, stability changes only
cusps. We have shown that it is possible to find the Ham
tonian and energy for solitons of non-Kerr-law media wit
out any knowledge of the functional form of the soliton
self. We gave various examples. We also considered s
simple dynamics, namely, the transformation of an unsta
soliton into a soliton of a stable branch.

We believe that this approach can be generalized to
clude more complicated Hamiltonian nonlinear systems,
cluding cases with two@8,10# or more coupled NLSEs@33#,
parametric solitons@34#, and examples of higher-order d
mensionality. For example, the curvesH(Q) calculated nu-
merically in @12# show clearly that our stability criterion ca
be applied to a system of coupled NLSEs. The results
tained in@14# also show that this principle can be generaliz
to the case of (113)D solitons. It is quite obvious, then, tha
(112)D cases and spatiotemporal (113)D solitons @35–
37# also could be handled with our approach. This mea
that, independent of their physical nature, single-soliton
lutions of Hamiltonian systems can be well understood a
analyzed using the concavity of theH(Q) curves.
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