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We use a novel approach to analyze the one-dimensional spinless Falicov-Kimball model. We derive a
simple effective model for the occupation of the localized orbitals which clearly reveals the origin of the
known ordering. Our study is extended to a quantum model with hybridization between the localized and
itinerant states: We find a crossover between the well-known weak- and strong-coupling behaviors. The
existence of electronic polarons at intermediate coupling is confirmed. A phase diagram is presented and
discussed in detail.
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The Falicov-Kimball model (FKM) is one of the sim-
plest yet most versatile models of strongly correlated elec-
tron systems. It describes a band of conduction (c)
electrons interacting via a repulsive contact potential G
with localized f electrons of energy �f. Originally con-
ceived as a model for valence transitions (VTs) [1], the
FKM is today usually regarded as a simple model of a
binary alloy, the so-called crystallization problem (CP) [2].
The CP assumes fixed c- and f-electron populations, ex-
amining the diagonal long-range order (LRO) adopted by
the f electrons in the ground state. Despite detailed nu-
merical maps of the one-dimensional (1D) FKM’s phase
diagram [3], its behavior is rigorously understood only at
weak [4] and strong coupling [5].

A c-f hybridization term is usually added to the FKM in
order to model mixed-valence systems [6]. The presence of
quantum valence fluctuations makes this a fundamentally
different problem to the FKM: It is referred to as the
extended or quantum Falicov-Kimball model (QFKM). In
contrast to the FKM, the QFKM’s behavior remains largely
unknown. Although there is no consensus on the nature of
the ground state [7,8], excitonic effects are expected to
dominate the physics, and so this remains an important
open question in the theory of optical properties of strongly
correlated electron systems.

Using the well-known nonperturbative technique of bo-
sonization, we obtain for the first time a complete theoreti-
cal description of the 1D FKM below half-filling. This
analysis reveals the role of the c electrons in generating
the observed f order; our approach naturally explains the
CP results. We derive an effective Hamiltonian for the
f-orbital occupancy which accurately predicts the FKM’s
phase diagram. For a small hybridization potential, our
approach is also suitable for the QFKM. We present a
phase diagram that interpolates between the weak- and
strong-coupling limits; our work rigorously establishes
the relevance of electronic polaron effects.

The FKM for spinless fermions has the Hamiltonian
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We consider only repulsive potentials, G> 0. The concen-
tration of electrons is fixed at n � 1

N

P
jfn

f
j � n

c
jg< 1,

where N is the number of sites. In our study of the
QFKM, we adopt the standard on-site hybridization poten-
tial H hyb � V

P
jff
y
j cj � H:c:g.

Proceeding with our bosonization solution, we linearize
the c-electron spectrum about the two Fermi points
and define left- and right-moving fermion fields c�j, � �
L���, R���, respectively, as subscript (otherwise). The
chiral density operators ���k� �

P
k0c
y
�k0�kc�k0 obey the

standard Luttinger commutators ����k�; ��0 �k0��� �
��;�0�k;�k0�kL=2� for a system of size L� a, the lattice
constant. The dual Bose fields are constructed in terms of
the ���k� [9]:
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The cutoff function ���k� appearing in Eqs. (2) and (3)
satisfies the conditions ���k� 	 1 for jkj< �

� and ���k� 	
0 otherwise. ���k� enforces the finite minimum wave-
length �> a of the bosonic density fluctuations ���k�:
Taking into account this wavelength limit is essential for
preserving the lattice structure of the FKM [9]. Since the
Bose fields cannot ‘‘resolve’’ distances less than �, the
usual commutators are ‘‘smeared’’ over this length:

���xj�; ��xj0 ��� �
i�
2

sgn��xj0 � xj�; (4)

�@x��xj�; ��xj0 ��� � �i����xj0 � xj�: (5)

Here sgn��x� and ���x� are the �-smeared sign and Dirac
� functions, respectively [10].

The chiral fermions are represented in terms of
the Bose fields by the Mandelstam identity c�j �������������
Aa=�

p
F̂� exp��i����xj� � ���xj���. The dimensionless

normalization constant A is dependent upon the form of
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���k�; the Klein factors F̂� are ‘‘ladder operators’’ be-
tween subspaces of differing c-electron number. The bo-
sonic form of the number operators is given by

ncj � nc0 �
a
�
@x��xj� �

Aa
�

X
�

F̂y�F̂��ei2���xj�e�i2�kFxj :

(6)

The first term on the right-hand side, nc0, is the noninteract-
ing c-electron concentration; the second term is the
forward-scattering density fluctuation; the third term is
the first order backscattering correction. Higher order cor-
rections are usually neglected.

Our bosonization analysis requires that nc0 � 0. For the
sake of brevity, here we assume the symmetric case with
equal c and f populations in the noninteracting limit, i.e.,
nc0 � nf0 �

1
2 n. For the VT problem, this pins the Fermi

level at �f � �2t cos�kFa�; kF � �n=2a is the Fermi
momentum (note that �f is irrelevant to the CP). Using
the electron concentration condition, we also rewrite the
Coulomb interaction up to a constant: G

P
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c
jn

f
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G
P
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c
j�n

f
j �

1
2� �

1
2G

P
jn
f
j . It is now a simple matter to

obtain the bosonized form of the Hamiltonian by substitut-
ing these identities into Eq. (1).

We apply a shift transformation on the c-electron bo-
sonic fields Û � expfi Ga�vF

P
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f
j �

1
2���xj�g, where vF �

2ta sin�kFa� is the c-electron Fermi velocity. This trans-
formation rotates the basis of the Hilbert space so that the c
electrons are explicitly coupled to the f orbitals.
Introducing a pseudospin- 1
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1
2 � 	zj, we write the

transformed Hamiltonian
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where K��xj� � S��xj� �L��xj�, S��xj� �
�
2 
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S��xj� is a measure of the short-range behavior of the
pseudospins, subtracting the 	z within � to the left of xj
from the 	z within � to the right; L��xj� probes the long-
range behavior, subtracting the 	z more than � to the left of
xj from the 	z more than � to the right [11]. We retain all
terms produced by the canonical transform in Eq. (7).
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The removal of the forward-scattering Coulomb inter-
action introduces the important new term

H int � �
G2a2

2�vF

X
j;j0
	zj���xj � xj0 �	

z
j0 : (8)

The origin of this interaction is the delocalization of the c
electrons below scales less than �> a. A c electron spread
over several lattice sites carries the same charge over these
sites: Due to the c-f repulsion G, this favors empty under-
lying f orbitals. Although such ‘‘segregation’’ is known to
occur in the CP [3,5], the derivation of the responsible
effective interaction is a new achievement in the history of
the model. The �-smeared � function in Eq. (8) implies
that the interaction is short-ranged; we therefore approxi-
mate the interaction H int 	 �J

P
j	
z
j	
z
j�1, J �

G2a2���a�=�vF.
The other terms in Eq. (7) involving the pseudospins are

a constant and a site-dependent field. The former is im-
portant only in the VT: Together with the first term in
Eq. (7), this determines the distribution of the electron
population across the two orbitals. The site-dependent field
arises from the 2kF backscattering of the c electrons off the
f orbitals. This leads to the known LRO phases, in analogy
to the Peierls state [4]. It is clear from Eq. (7) that the LRO
dominates the segregation at weak coupling G� t; in-
creasing G, however, Eq. (8) eventually causes the system
to segregate (the SEG phase).

The competition between the SEG and LRO phases can
be simply studied within the framework of our bosoniza-
tion approach: Since the only coupling in Eq. (7) between
the Bose fields and the 	 pseudospins is in the backscat-
tering term, by replacing � with a suitably chosen expec-
tation value we obtain an effective Hamiltonian H eff for
the f occupation only. Exact diagonalization calculations
on 3200-site chains reveals that, within the SEG phase, the
c electrons are at their Luttinger liquid fixed point for all G
[12]. The choice h��xj�i � 0 is therefore valid across the
phase diagram [9]. Substituting this into Eq. (7), we find

H eff � �J
X
j

	zj	
z
j�1 �
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X
j

	zj cos
�
2
�
K��xj�

�

�
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�
xj

��
:

(9)

Below we present a detailed analysis of H eff .
Since the c and f populations are fixed in the CP, Eq. (9)

by itself fully describes the system close to the SEG-LRO
boundary. To determine this line, the site dependence of the
longitudinal field must be known; in particular, we exam-
ine S��xj� and L��xj�. Within the SEG phase, the f
electrons are arranged into a single block [5]. The magni-
tude of L��xj� reaches a maximum at the edge of this
block, increasingly linearly as the edge is approached from
either side. In contrast, S��xj� vanishes everywhere except
7-2
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FIG. 1. Ground-state phase diagram for the symmetric FKM
below half-filling for the CP (dashed line) and VT problems
(solid line). The numerical data points (circles for VT, plus sign
for CP) are due to Gajek et al. [3]. Inset: The phase diagram for
the QFKM. Phases are as described in text.
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in the vicinity of this edge. The longitudinal field, thus, has
the general form hzj / cos�!j���, ! and � constants.

The periodicity (!) of hzj determines the critical Ising

coupling [13]: For G� t, we find the critical line Gca �
vF

����������������������������
2�A=����a�

p
. The f-electron configuration acts as an

applied scattering potential Gh	zji for the c electrons [12].
Below the average interparticle separation �k�1

F , the c
electrons scatter independently: For n� 1, the low-energy
(E � 0) wave functions  therefore obey the Schrödinger
equation @2

x �x� � Gmh	zxi �x� in the continuum limit (m
is the bare electron mass). From elementary quantum
mechanics, we find plane wave solutions over unoccupied
orbitals (h	zxi � �

1
2 ) and exponentially decaying solutions

with characteristic length 
 /
��������
t=G

p
over occupied orbitals

(h	zxi �
1
2 ) [14]. 
 clearly corresponds to � in the boson

theory; for small Gc Taylor expanding ���a� in the critical
line equation gives Gca=vF �

������������
2�2A
p

�1� a2=2�2 �
  �, implying a linear relationship between Gca=vF and
Gc. This is confirmed at intermediate coupling by examin-
ing the numerical data of Gajek et al., with our fit giving
A � 1=32�2, � � a=2

������
Gc
p

, and a critical line Gc=t �
0:5 sin�n�=2�=�1� sin�n�=2�� as plotted in Fig. 1. This
is the first analytic expression for the SEG-LRO boundary
valid at weak coupling.

Moving on to the VT problem, it is clear from Eq. (7)
that the Coulomb interaction will shift the f level down-
wards, emptying the c band. The depletion of the
c-electron population causes segregation to occur at a
smaller value of G than in the CP; the new boundary can
be calculated self-consistently from the available numeri-
cal results [3]. Using the same curve-fitting technique as
for the CP, we find excellent agreement with the data for
Gc=t � 0:35 sin�n�=2�=�1� sin�n�=2�� (A 	 1:55

10�3, � 	 0:418a=

������
Gc
p

); see Fig. 1. Further increasing
G above the critical value G=t � 4�1� cos�n�=2��=�1�
n�, the f level lies below the c-electron band edge and so
all electrons have f character. The absence of c electrons to
mediate the segregating interaction implies that here any f
configuration is the ground state.

We extend our analysis to the physically interesting limit
V � t of the QFKM. Bosonizing and carrying out the
canonical transform, the hybridization adds the term

Û yH hybÛ � 4V

������
Aa
�

s X
j

	xj cos
�
K��xj� �

�
kF �

�
2a

�
xj

�

(10)

to the effective pseudospin Hamiltonian Eq. (9). We have
used a generalized Jordan-Wigner transformation to com-
bine the f-electron operators and the Klein factors into
pseudospins 	�j � fyj F̂�e

�i��xj=2a exp��i ��2
P
j0sgn�xj0 �

xj��n
f
j0 �

1
2��. The resulting effective pseudospin Hamil-

tonian is easily recognized as the Ising model in site-
dependent longitudinal (hzj) and transverse (hxj) fields.
03640
Although we are not aware of any systematic study of
this Hamiltonian, we can nevertheless deduce important
aspects of its physical behavior. The two limits t�G� V
and G� V are easiest to discuss. In the former case, the
hybridization does not radically modify the VT physics.
Where the longitudinal field dominates, we can discard the
Ising interaction so that the pseudospins track the longitu-
dinal and transverse fields; clearly, the transverse field will
be important only where the longitudinal field is small.
This will ‘‘smear’’ the crystalline arrangement but leave
the basic picture of a density wave intact. Where the Ising
interaction dominates, the hybridization will stabilize the
SEG phase as quantum fluctuations maintain a nonzero
c-electron population.

For G� t, the quantum fluctuations produced by the
hybridization dominate, fundamentally altering the behav-
ior of the system. Discarding the Ising interaction which is
irrelevant for most of this regime, we arrive at the same
trivial model of pseudospins tracking longitudinal and
transverse fields as in the G� t LRO phase. Here, how-
ever, the transverse field is generally much larger than the
longitudinal field: The pseudospins will be mostly ordered
along the x axis with h	xji 	

1
2 sgn�hxj�. In terms of the f

occupation, this implies that hfyj cji � 0, with intermediate

occupation of each f orbital 0< hnfj i 	
1
2n. The longitu-

dinal field produces only small deviations from this homo-
geneous distribution of electron density. This is clearly a
mixed-valence state (MVS).

Our pseudospin model allows us to connect these two
limits for the first time: For V � 0:05t, we present the
QFKM’s phase diagram as the inset in Fig. 1. Close to
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half-filling, the Ising interaction is never dominant, so the
model of 	 pseudospins tracking the longitudinal and
transverse fields is valid for any G. In Fig. 1, we define
an MVS-LRO boundary by equating the magnitude of the
transverse and longitudinal fields. For small n, however,
the longitudinal field is negligible; discarding this term
from H eff , we find that a transverse field Ising model
(TFIM) describes the f-orbital occupation. Although the
TFIM has an order-disorder transition [15], the shifting of
the f level lifts the system from criticality and so there is a
crossover regime (CR) between the SEG and MVS phases.

The details of the CR physics are controlled by the site
dependence of the transverse field Eq. (10). Near the SEG
phase, we can use the same values for S��xj� and L��xj� as
in the CP analysis; for MVS behavior, both these objects
vanish. We thus assume a periodic transverse field within
the CR. In general, the periodicity is incommensurate with
the lattice: Numerical studies [16] reveal this to be quali-
tatively identical to a random variation of the transverse
field. The random TFIM has been studied in depth by
Fisher [15] using a real-space renormalization group treat-
ment. To relate Fisher’s results to the CR, we assume an
effective Hamiltonian H CR � �J

P
j	
z
j	
z
j�1 �

P
jh
x
j	
x
j ,

where the values of hxj are drawn randomly from the

cosine distribution ��h�dh � �C���1
������������������������
1� �h=C�2

p
, C �

4V
������������
Aa=�

p
. For the CR, A and � are as in the SEG phase;

we thus use the values from the V � 0 VT problem.
Lowering G from the SEG phase, the CR is reached at

J c1 � maxjhxj j: For J < J c1, the Ising coupling is not
greater than the magnitude of the transverse field every-
where on the lattice. The rare regions where jhxj j> J

break the SEG ground state up into randomly distributed
large clusters of zero and full f occupancy. The system
nevertheless retains the character of the SEG phase so long
as J > J c2 � jh

x
j j, the average value of jhxj j across the

lattice. This is reflected by the mean f-f correlations

hnfj n
f
j�xi which decay exponentially to �nf�2 > �nf0�

2 with
correlation length �� expf�2�ln�J c2=J ��

2g.
Decreasing J below J c2, the character of the CR re-

verses, as here J < jhxj j over most of the lattice. Of the
SEG state, only rare clusters remain, embedded in a
valence-fluctuating background. This MVS-like region of
the CR is characterized by a different functional form for
the correlation length �� �ln�J c2=J ���2; the correlation
functions decay exponentially to �nf0�

2. The CR persists
until J becomes comparable to the longitudinal field in
Eq. (9): The system is then best described by the small-G
MVS. In Fig. 1, the upper boundary of the CR is derived
from the condition J c1 � maxjhxj j and is given by Gc1 �

2�fVvF�=a���a�g
������������
A=a�

p
�1=2; the lower boundary is the
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critical line Gc as the V � 0 VT problem. We extend the
curve Gc1�n� to G> t using the VT result for �.

The distinguishing feature of the CR is the randomly
distributed clusters of integral f valence. These clusters
occur where the local c-electron density departs from the
MVS average, determining the occupation of the under-
lying f orbitals via the forward-scattering Coulomb inter-
action [i.e., Eq. (8)]. This coupling of the c- and f-electron
densities is an electronic polaron. Studying the QFKM, Liu
proposed that electronic polaron effects appeared inter-
mediate between mixed- and integral-valence phases [7].
Since bosonization treats the forward-scattering exactly
[9], our calculation rigorously confirms Liu’s scenario.

In summary, we have presented the results of a novel
theoretical study of the 1D FKM. Using a nonperturbative
approach, we have uncovered the physical mechanisms
responsible for the known f-electron ordering. We derive
an effective Hamiltonian for the occupancy of the f orbi-
tals which predicts the SEG-LRO transition. We also study
the QFKM for small hybridization V � t. For the first
time, we can accurately interpolate between the well-
known CP and MVS limits: At intermediate coupling, we
find a crossover regime where electronic polaron effects
are of importance.
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Batista and J. E. Gubernatis.
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