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We propose a scheme to achieve Mach-Zehnder interferometry using a quantized Bose-Josephson
junction with a negative charging energy. The quantum adiabatic evolution through a dynamical
bifurcation is used to accomplish the beam splitting and recombination. The negative charging energy
ensures the existence of a path-entangled state which enhances the phase measurement precision to the
Heisenberg limit. A feasible detection procedure is also presented. The scheme should be realizable with
current technology.
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Quantum interference, one of the most fundamental and
challenging principles in quantum mechanics, forms the
basis of high-precision measurement and quantum infor-
mation processing. A basic device capable of performing
high-precision measurements is an analogue to the optical
Mach-Zehnder interferometer, in which an incoming wave
is divided into two parts by a 50:50 beam splitter and then
the two parts are recombined by another beam splitter.
Conventional Mach-Zehnder interferometry utilizing
single-particle states can only reach the standard quantum
limit or the shot noise limit on the measurement precision
[1]. However, it has been demonstrated that many-body
quantum entanglement, such as the photon polarization
entanglement [2] and the trapped-ion internal entangle-
ment [3], can enhance the measurement precision to the
so-called Heisenberg limit [1] posed by the Heisenberg
uncertainty principle. The application of spin entangle-
ment in interferometry has also been discussed [4].

Given the well-developed techniques in preparing and
manipulating atomic Bose-Einstein condensates, the inter-
ferometric schemes based upon ultracold atoms stimulate
great interests. Using spatially separated condensates [5],
condensates trapped within double-well potentials [6], and
classical Josephson arrays of tunneling coupled conden-
sates [7], the atomic coherence and interference have been
demonstrated. All these experiments have utilized the
macroscopic quantum coherence which is well described
within the mean-field theory. The many-body nature be-
comes significant for strongly correlated atoms and some
many-body quantum effects including quantum squeezing
[8], quantum entanglement [9], and quantum phase tran-
sition [10] have been explored. These effects lie beyond the
reaches of the mean-field theory.

On the other hand, due to the s-wave scattering domi-
nating the ultracold collisions, the nonlinear Kerr effect is
intrinsic to the atomic condensates. It has been shown that
the nonlinear interaction brings a number of novel phe-
nomena [11] including wave mixing [12], soliton [13],
dynamical bifurcation [14], and chaos [15]. In this Letter
we will demonstrate how the combination of nonlinear
and many-body quantum effects can be used to realize a

Heisenberg-limited Mach-Zehnder interferometry with
Bose condensed atoms.

In this Letter, in the frame of fully quantized theory, we
propose and analyze a practical scheme of a Mach-Zehnder
interferometry with a Bose-Josephson junction. The beam
splitters are realized by the quantum adiabatic processes
through the dynamical bifurcation. To ensure the existence
of a path-entangled state, which enhances the phase mea-
surement precision to the Heisenberg limit, the charging
energy is chosen to be negative values. We also discuss a
feasible procedure for detection and the experimental real-
ization. The proposed interferometry scheme can operate
for large particle numbers (�103), whereas the schemes of
photons [2] and trapped ions [3] can only reach the order of
10 particles. Reduced influence of the environment and a
simple detection procedure are advantages of this scheme.

We consider an ensemble of N Bose condensed atoms
confined in a double-well potential [or N two-level Bose
condensed atoms confined in a single-well potential with
laser (or radio frequency) coupling between the two in-
volved hyperfine levels]. Under the condition of tight
binding, the system obeys a two-mode Hamiltonian,

 H �
�
2
�n2 � n1� �

T
2
�a�2 a1 � a

�
1 a2� �

EC
8
�n2 � n1�

2:

Here, a�j , aj, and nj � a�j aj (j � 1, 2) denote the crea-
tion, annihilation, and particle number operators for the jth
mode, respectively. This Hamiltonian describes a quan-
tized Bose-Josephson junction with an imbalance �, an
intermode coupling T, and a charging energy EC. The
values of �, T, and EC are controlled by the potential
asymmetry (or the internal energy difference), the tunnel-
ing strength between two wells (or the Rabi frequency for
coupling fields), and the s-wave scattering lengths, respec-
tively [8,9,14–16]. Regarding all atoms as spin-1=2 par-
ticles, one can define the angular momentum operators as
Jx � �a�2 a1 � a2a�1 �=2, Jy � i�a�2 a1 � a2a�1 �=2, and
Jz � �a�2 a2 � a�1 a1�=2. Thus, H � �Jz � TJx � ECJ2

z=2
and an arbitrary state can be expanded as a superposition of
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different states jJ � N=2; Jz � Mi with M � �N=2;
�N=2� 1; . . . ;�N=2.

The ground states of the quantized Bose-Josephson
junction sensitively depend on the parameters. For a sym-
metric junction (� � 0), in the strong coupling limit
(T=jECj � 1), the ground state is a SU(2) spin coherent
state exp�i�Jz� exp�i�Jy�jN=2;�N=2i with � � 0 and
� � �=2. In the weak coupling limit (T=jECj � 1), the
ground state relies on EC. If EC > 0, the ground state
approaches to �jN=2;�1=2i � jN=2;�1=2i�=

���

2
p

for odd
N or jN=2; 0i for even N, when T ! 0. If EC < 0, the
ground state j0i and the first excited state j1i become
degenerate when T ! 0, as shown in Fig. 1(a). The critical
value between nondegeneracy and degeneracy corresponds
to a classical Hopf bifurcation from single-stability to
bistability [14]. With T � 0, these two states are the lowest
spin state jN=2;�N=2i and the highest spin state
jN=2;�N=2i, respectively. However, the degeneracy be-
tween j0i and j1i will be destroyed by the appearance of a
nonzero �. In Fig. 1, we show the energy spectra and the
ground states for a quantized Bose-Josephson junction
with � � 0, EC � �2:0, and N � 20.

For the system of a larger N, similar transition from
nondegeneracy and degeneracy could be induced by the
bifurcation. Its energy spectrum can be analyzed with the
Bethe ansatz [17]. Its numerical simulation is difficult to
perform; while some approximate methods including the
iteration diagonalization and the density matrix renormal-
ization group methods have been suggested, such an analy-
sis is beyond the scope of our Letter. We stress that the
physics of the analyzed situation is the source for the
systems of small (�10) and large (	103) N and the used
exact diagonalization is an adequate tool for our proof-of-
the-principle calculations.

By using the ground state and the first excited state as
two paths of an interferometer and accomplishing the beam

splitting and recombination via adiabatic passage through
dynamical bifurcation, it is possible to realize a Mach-
Zehnder interferometry on a quantized Bose-Josephson
junction with finite negative EC.

The first beam splitter can be achieved by preparing the
ground state in the strong coupling limit and then slowly
decreasing T to zero, due to the appearance of a dynamical
bifurcation. The negative EC ensures that one will get a
path-entangled state �jN=2;�N=2i � jN=2;�N=2i�=

���

2
p

in the weak coupling limit, so that the first beam splitter
also provides a route to producing a kind of entangled state.
Even in the appearance of the Landau-Zener tunneling
induced by the imbalance, if j�j< �C, one can still get a
path-entangled state �jN=2;�N=2i � ei’jN=2;�N=2i�=
���

2
p

with a desired high fidelity. The phase difference ’
mainly comes from the imbalance and the critical value �C
depends on the parameters and the desired fidelity.
Utilizing the Landau-Zener tunneling as coherent beam
splitters, the Mach-Zehnder interferometry has been dem-
onstrated in a superconducting flux qubit [18]. Similarly,
starting from jN=2;�N=2i or jN=2;�N=2i at T � 0, and
slowly increasing T to T � jECj, beam splitting is induced
by the bifurcation. In the strong coupling limit, one will
obtain an equal probability superposition state of j0i and
j1i. In all these adiabatic processes, the evolving states
perfectly keep in the sub-Hilbert space expanded by the
ground state and the first excited state.

For a quantized Bose-Josephson junction with EC �
�2:0, N � 20, and T � 40� t (where t is the evolution
time), in Fig. 2, we show the initial state, the destination
states, and the fidelities F0 � jh0j��t�ij

2 and F1 �
jh1j��t�ij2 of the evolving state ��t� in a beam splitting
process from T � 40 to 0. Here, F0 and F1 denote the
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FIG. 1 (color online). The energy spectra and the ground states
for a symmetric quantized Bose-Josephson junction with EC �
�2:0 and N � 20. (a) The energy spectra for different T. (b),
(c) The degenerated first excited state j1i and the ground state j0i
for T � 0. (d) The ground state for T � 40.
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FIG. 2 (color online). The beam splitting process from T � 40
to T � 0 in a symmetric [cases (a–(c)] or weakly asymmetric
(case d) quantized Bose-Josephson junction with EC � �2:0
and N � 20. (a) The initial state at T � 40 is the ground state.
(b) The destination state at T � 0 is a path-entangled state
�j10;�10i � j10;�10i�=

���

2
p

. (c) The fidelities of the evolving
states ��T� versus the coupling T. (d) The maximum fidelity
Fmax

� � max�jh��’�j��T � 0; ��ij2� of the destination state
��T � 0; �� to the path-entangled state j��’�i vs the imbal-
ance �.
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populations of the evolving states ��t� occupying the
states j0i and j1i, respectively. The result shows the total
fidelity F0 � F1 almost keeps unchanged; this indicates
that the environment effect is dramatically suppressed in
the involved adiabatic processes. Controlling the imbal-
ance j�j< 0:015, one can get the path-entangled states
j��’�i � �jN=2;�N=2i � ei’jN=2;�N=2i�=

���

2
p

with
high fidelities larger than 0.98, see Fig. 2(d).

Inducing an unknown phase shift � between two paths
with a mode-dependent force, the path-entangled state
prepared by the first beam splitter evolves into a
�-shifted path-entangled state j����i � �jN=2;�N=2i �
ei�jN=2;�N=2i�=

���

2
p

. To extract the information on the
phase shift, one has to recombine j����i by the second
beam splitter and monitor the populations in the two output
paths. For a symmetric or a weakly asymmetric quantized
Bose-Josephson junction with a negative EC, the beam
recombination can be achieved by a dynamical bifur-
cation or a Landau-Zener tunneling in the process of
slowly increasing T from 0 to T � jECj. Finally, in the
strong coupling limit, the populations in the ground state
and the first excited state will show interference behav-
ior with the outcome determined by the phase shift �.
In an ideal case, the fidelities of the final state to the
ground and the first excited states can be exactly expressed
as F0 � jh0j��T�ij

2
T�jECj

� cos2��=2� and F1 �

jh1j��T�ij2T�jECj � sin2��=2�, respectively. This means

that all particles will occupy the ground state if � � 2k�
(where k is an integer) or will stay in the first excited state
if� � �2k� 1��. By slowly increasing T from 0 to 40, we
simulate the beam recombination process in a symmet-
ric quantized Bose-Josephson junction with N � 20 and
EC � �2:0 from the initial path-entangled states
j����i � �j10;�10i � ei�j10;�10i�=

���

2
p

, see Fig. 3.
The fidelities of the destination state ��T � 40� to the
ground state F0 and the first excited state F1 show perfect
behaviors of the Mach-Zehnder interference. Utilizing the

path-entangled states in our scheme, the phase measure-
ment precision reaches the Heisenberg limit [1]. This is in
contrast to the conventional schemes using untangled
single-particle states which can only reach the standard
quantum limit or the shot noise limit [1].

Because of the absence of an effective method to dis-
tinguish between j0i and j1i in the strong coupling limit, it
is not easy to know the populations in these two states by
directly detecting the output state from the previous pro-
cedure. Fortunately, utilizing the similarity of j0i and j1i
for symmetric and asymmetric quantized Bose-Josephson
junctions in the strong coupling limit and the nondegener-
acy of these two states for an asymmetric junction, one can
distinguish these two states by suddenly applying a proper
imbalance and then slowly decreasing T from T � jECj to
zero (or close to zero). To determine the population of the
states in the strong coupling limit, one has to avoid the
dynamical bifurcation and the Landau-Zener tunneling;
that is to say, one has to maintain the populations in both
j0i and j1i unchanged. To avoid the dynamical bifurcation,
the applied imbalance must satisfy the condition j�j<
jECj=2; and to make the Landau-Zener tunneling absent,
it is the best to choose the imbalance j�j � jECj=4. Under
these conditions, when T approaches zero, the ground state
and the first excited state become the lowest spin state
jN=2;�N=2i and the highest spin state jN=2;�N=2i,
respectively. These two states with the largest jJzj corre-
spond to all particles completely localized in either of the
two modes, which can be easily detected. For an asym-
metric quantized Bose-Josephson junction with N � 20,
EC � �2:0, � � 0:5, and T > 35, the fidelities of the
ground state and the first excited state to the symmet-
ric counterparts are very close to 1, i.e., F000 �

j��0h0
0j0i��0:5j

2
T>35 ’ 1 and F110 � j��0h1

0j1i��0:5j
2
T>35 ’

1, as seen in Fig. 4(b). At T � 0, the ground state and the
first excited state are the lowest spin state j10;�10i [see
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FIG. 3 (color online). Behaviors of Mach-Zehnder interference
in the output states of a symmetric quantized Bose-Josephson
junction with N � 20 and EC � �2:0 with initial states j����i
through a dynamical bifurcation to the strong coupling limit
(T � 40).
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FIG. 4 (color online). The energy spectrum, the states j0i and
j1i, and their fidelities to the symmetric counterparts for an
asymmetric quantized Bose-Josephson junction with N � 20,
EC � �2:0, and � � 0:5. (a) The energy spectrum. (b) The
fidelities F000 and F110 for different T. (c) The ground state j0i
for T � 0. (d) The first excited state j1i for T � 0.
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Fig. 4(c)] and the highest spin state j10;�10i [see
Fig. 4(d)], respectively. Taking the output states from the
second beam splitter, suddenly applying an imbalance
� � 0:5 and then slowly varying T from 40 to 0, our
numerical simulation shows that the populations in the
ground state and the first excited states remain unchanged
due to the nondegeneracy and sufficiently large energy
level distances.

There are two alternative approaches to the experimental
realization. One possibility is to trap the condensed atoms
in a double-well potential formed by external fields [6,16],
the other is to use a harmonically trapped two-component
condensate with internal coupling between the two in-
volved hyperfine levels [16,19]. In both cases, the negative
charging energy can be obtained by controlling the s-wave
scattering lengths as with Feshbach resonance. For the
condensates in double-well potentials, the imbalance and
the coupling strength can be precisely adjusted with the
techniques developed for matter-wave interference on an
atom chip [6]. Assuming the experimental setup used to
observe self-trapping Phys. Rev. Lett. 95, 010402 (2005)
and changing as from positive to negative, the parameter
� � NjECj=�2T� � 15 ensures the appearance of the path-
entangled state. For the coupled two-component conden-
sates [19], the imbalance is determined by the energy
difference between the two involved hyperfine levels, and
can be varied by applying external magnetic fields. The
coupling strength is determined by the Rabi frequency of
the coupling fields, and can be controlled by changing
the field intensity. Assuming the experimental setup in
Phys. Rev. Lett. 81, 1539 (1998), for N � 103, � �
NjECj=�2T� � 10 requires the Rabi frequency � �
T=@� 2� Hz and the exact path-entangled state is reached
at � � 0 Hz. To count the atom numbers in a particular
mode, one can use fluorescence imaging for small total
numbers of atoms or use spatial imaging for large total
numbers of atoms (�103 or larger).

To conclude, we have discussed a simple and robust
scheme to achieve a Heisenberg-limited Mach-Zehnder
interferometry with macroscopic many-body quantum
states in a quantized Bose-Josephson junction with nega-
tive charging energy, which can be realized with the
present level of expertise in manipulating ultracold atoms.
The interferometry not only is of fundamental physical
interests, but also offers possible technological applica-
tions in high-precision measurements [1,20], in which the
phase measurement precision reaches the Heisenberg limit
posed by the uncertainty principle. On the other hand,
given the routinely prepared condensates of 103 or larger
number of atoms, the first beam splitter in our interferome-
ter also provides an opportunity to produce path-entangled
states of very large number of particles. The presented
Mach-Zehnder interferometry with path-entangled states
of large number of particles has an obvious advantage over
the schemes using entangled states of photons [2] or
trapped ions [3], which can only operate with the order
of 10 particles. All involved processes, except for the beam

splitting and recombination, satisfy the adiabatic condi-
tion, and all involved quantum states are eigenstates of the
system. Moreover, the sub-Hilbert space of the evolving
states is closed even in procedures of beam splitting and
recombination, which means that our scheme ultimately
suppresses the experimental errors causing from the envi-
ronment. Additionally, unlike the interferometry on linear
optics, which needs one polarization detector per photon
[2], our interferometry with a quantized Bose-Josephson
junction needs only two detectors for any number of
particles.
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