
Numerous time-series studies have investi-
gated the association between daily adverse
health outcomes and daily ambient air pollu-
tion concentrations (Chock et al. 2000;
Cifuentes et al. 2000; Goldberg et al. 2003;
Kelsall et al. 1997; Kwon et al. 2001;
Moolgavkar 2000; Ostro et al. 1999; Smith
et al. 2000; Stieb et al. 2002). These studies
typically fit a Poisson log-linear model to
concurrent time series of daily mortality or
morbidity, ambient air pollution, and meteo-
rologic covariates. The fitted models are then
used to quantify the adverse health effects of
ambient air pollution. Because the U.S.
Environmental Protection Agency regulates
pollutants independently, much of the cur-
rent time-series research on the adverse health
effects of air pollution has focused on estimat-
ing the effect of an individual pollutant
(Dominici and Burnett 2003). However,
because of the potential for high correlations
to exist between ambient air pollutants, the
results from studies that focus on a single pol-
lutant can be difficult to interpret in practice
(Vedal et al. 2003). For example, an observed
positive association could occur because the
single air pollutant is a proxy for another air
pollutant or for a mixture of air pollutants. 

To overcome the limitations of single-
pollutant time-series studies, a number of
studies have investigated the concurrent
adverse health effects of multiple air pollutants

(Moolgavkar 2000; Wong et al. 2002). In the
majority of these studies, the multiple air pol-
lutants are simultaneously entered into a sin-
gle Poisson log-linear model. The results from
these studies are then used to isolate the
adverse health effects of the individual pollu-
tants. However, one important question that
these multiple pollutant studies fail to answer
is whether there is a specific mixture of pollu-
tants associated with adverse health outcomes.
Moreover, it has recently been stated that it
may be more reasonable to assume that there
is a mixture of pollutants that is considered
harmful to health (Dominici and Burnett
2003; Moolgavkar 2003; Stieb et al. 2002).
Assessing the adverse health effects of an air
pollution mix may therefore be both more
interpretable and more feasible than attempt-
ing to isolate the effects of individual pollu-
tants independent of other pollutants. The
development of new methodology and models
to concurrently estimate the adverse health
effects of multiple air pollutants has been
identified by statisticians, epidemiologists, and
policymakers as an important area of ongoing
research (Cox 2000; Dominici and Burnett
2003). A number of studies have addressed
this issue using methods ranging from the cal-
culation of air pollution indices to the applica-
tion of shrinkage-based methods such as ridge
regression and the lasso (Hong et al. 1999;
Roberts and Martin 2005, 2006a).

One method used or proposed by
researchers to analyze the effect of multiple
pollutants is principal components analysis
(PCA) (Burnett et al. 2003; Cox 2000). PCA
avoids the problem of unstable parameter
estimates sometimes obtained in multiple
pollutant studies because of the high correla-
tions between pollutants. However, one char-
acteristic of PCA in this context is that the
mixture of pollutants identified as a principal
component is constructed using only covari-
ate information without regard to the rela-
tionship between pollutant levels and
mortality. We investigate a recently proposed
modified version of PCA called supervised
principal component analysis (SPCA) for
analyzing the adverse health effects of multi-
ple pollutants. SPCA was developed by Bair
et al. (2006) for use in regression problems in
which the number of predictors greatly
exceeds the number of observations. In this
article we refine their implementation of
SPCA to make it suitable for use in multiple
pollutant studies. For this purpose SPCA is
similar to conventional PCA except that it
uses a subset of the multiple pollutants that
are selected on the basis of their association
with the adverse health outcomes of interest
rather than only on intrinsic properties of the
covariate space. As a result, SPCA is allowed
to exclude pollutants not associated with the
adverse health outcomes from the mixture of
pollutants it returns.

In addition to PCA, a number of methods
have been developed in the regression literature
to deal with the problem of high correlations
among covariates or predictor variables. These
methods include ridge regression, partial least
squares, and latent root regression (Bertrand
et al. 2001). Similar to SPCA, partial least
squares and latent root regression use informa-
tion in the response variable to construct latent
variables (linear combinations of the predictor
variables) to be used as predictors. Latent root
regression shares another feature in common
with SPCA in that it also makes use of a PCA
to construct the latent variables. Latent root
regression and partial least squares may also
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prove useful tools in assessing the adverse
health effects of multiple air pollutants. For
this reason future studies that investigate the
use of these methods for assessing the adverse
health effects of multiple air pollutants may
prove valuable. Further information on latent
root regression can be found in Gunst et al.
(1976) and Webster et al. (1974), and further
information on partial least squares can be
found in Hoskuldsson (1988).

Materials and Methods

Materials. The data used in this article were
obtained from the publicly available National
Morbidity, Mortality, and Air Pollution
Study (NMMAPS) database (Johns Hopkins
Bloomberg School of Public Health 2005).
The data extracted consists of concurrent
daily time series of mortality, weather, and air
pollution for nine cities in the United States
from 1987 to 2000. The nine cities selected
had a relatively large number of days with
measurements for all five air pollutants con-
sidered. Many of the cities in the NMMAPS
database do not collect data on all five air pol-
lutants and/or have a large number of days
with missing air pollutant concentrations.
Further details on the data used can be
obtained at http://www.ihapss.jhsph.edu/
(Johns Hopkins Bloomberg School of Public
Health 2005).

The mortality time-series data, aggregated
at the county level, are nonaccidental daily
deaths of individuals 65 years of age and
older. Deaths of nonresidents were excluded
from the mortality counts. The weather time-
series data are 24-hr averages of temperature
and dew-point temperature, computed from
hourly observations. The five air pollutants
considered are particulate matter (PM) of
< 10 µm in diameter (PM10), ozone, sulfur
dioxide, carbon monoxide, and nitrogen
dioxide. For PM10, SO2, CO, and NO2, aver-
age daily concentrations were used. For O3
the maximum hourly concentration for each
day was used. In the analyses that follow, each
of the pollutant time series was standardized
to have unit variance.

Methods. The majority of time-series stud-
ies that have investigated the concurrent
adverse health effects of multiple air pollutants
simultaneously entered the pollutants into a
single Poisson log-linear model. With this
model the daily adverse health outcome counts
are modeled as independent Poisson random
variables with a time-varying mean µt , where

log(µt) = confounderst

+ β1X1t + β2X2t +…+ βkXkt , [1]

and where confounderst represents other time-
varying variables related to the adverse health
outcomes, Xit, i = 1,..,k represent the k pollu-
tants under investigation, and βi, i = 1,..,k,

measure the adverse health effect of pollutant
i, assuming all other pollutant levels are held
fixed. Hereafter, Model 1 will be referred to as
the “standard model.” 

A noted problem with the standard model
is that the pollutant-effect parameter estimates
may be unstable (i.e., have unduly high covari-
ance structure) because of high correlation
among pollutants (Burnett et al. 2003). When
high correlation exists among pollutants, one
of the pollutants can be well approximated by a
linear combination of the remaining pol-
lutants, resulting in the fitted model becoming
close to unidentifiable, and the associated
parameter estimates becoming unstable (Ramsay
et al. 2003). In the context of linear regression,
this is commonly referred to as the problem of
multicollinearity. When generalized linear
models (GLMs) or generalized additive models
(GAMs) are used, an analogous problem to
multicollinearity, concurvity, can occur.
Concurvity refers to the situation in which a
function of one of the covariates is well approxi-
mated by a linear combination of the functions
of other covariates. In our context the functions
would be the smooth functions used to model
the effects of the confounding covariates. Like
multicollinearity, concurvity results in unstable
parameter estimates from the fitted model. In
the presence of concurvity, it was noted by
Ramsay et al. (2003) and Dominici et al.
(2002) that the variance estimates obtained
from a fitted GAM do not reflect the resulting
instability of the parameter estimates. To avoid
this problem, Ramsay et al. (2003) suggested
that the GLM be used instead of the GAM
and that the confounding covariates be mod-
eled parametrically, for example, by using nat-
ural cubic splines. For this reason all models in
this article will be posed as the GLM with nat-
ural cubic splines used to model the effect of
the confounding variables. This is the same
modeling approach that has been adopted in a
number of recent studies (Luginaah et al.
2005; Peng et al. 2005).

PCA is a method commonly used in
regression analysis to overcome the problems
associated with correlated explanatory vari-
ables. In the context of the standard model,
PCA finds the linear combination of the pol-
lutant variables that has maximal variance
among all such combinations. Specifically,
constants αi, i = 1,..,k are found such that the
variance of Z1t = α1X1t + α2X2t + … + αkXkt is
maximized. The standard model is then re-fit
using the derived variable Z1t, referred to as
the first principal component, in place of the
k original pollutant variables Xit, i = 1,..,k:

log(µt) = confounderst + β1Z1t . [2]

Using the single derived variable Z1t in
Model 2 avoids the coefficient instability
problems associated with fitting a model to the

correlated pollutant variables. A simple justifi-
cation for PCA is that by choosing the linear
combination with maximum variance we are
retaining as much of the information con-
tained in Xit, i = 1,..,k as possible with the use
of only a single variable Z1t. It should be noted
that a complete PCA of the pollutant data
returns k independent principal components
Zit, i = 1,..,k, each describing successively less
of the information (variance) contained in Xit,
i = 1,..,k. In many cases the first one or two
principal components capture almost all the
variability in the covariate space, and so for
ease of interpretation we elect here to consider
only the first and most important PCA variable
in our analysis. Hereafter, Model 2 will be
referred to as the “PCA model.”

One characteristic of PCA is that the pollu-
tant mixture Z1t = α1X1t + α2X2t +…+ αkXkt
derived from the PCA model is chosen without
regard to the response variable—the daily
adverse health outcomes of interest. The PCA
approach was designed to reduce the dimen-
sion of a high-dimensional covariate space so
that fewer variables might be considered in an
analysis. As such, the relationship between the
covariates and the response is simply not con-
sidered in constructing the principal com-
ponents. This is a potentially undesirable
characteristic because pollutants that are not
associated or only weakly associated with the
adverse health outcomes will, all other things
being equal, be treated exactly the same by
PCA as those pollutants strongly associated
with the adverse health outcomes. SPCA is a
modification of PCA that avoids this character-
istic by explicitly incorporating information on
the relationship between the predictor variables
and the response. It should be noted that
SPCA shares a feature similar to another multi-
variate analysis technique, canonical correlation
analysis, that also finds linear combinations of
the predictor variables that depend on the
response variable or variables. However, the
two methods have important differences,
including the criterion used for finding the
optimal linear combinations and that SPCA is
used when there is a single response variable
and a number of explanatory variables, whereas
canonical correlation analysis is used when
there are a number of response variables and a
number of explanatory variables. 

As originally proposed, SPCA was designed
for regression problems in which the number
of predictors greatly exceeds the number of
observations. Here we implement a version of
SPCA that can be used as an alternative to
PCA in multiple pollutant studies, a situation
where the number of observations generally
exceeds the number of parameters. Our imple-
mentation of SPCA proceeded as follows:
1. Fit a separate Poisson log-linear model for

each pollutant variable, relating the con-
founders and the given pollutant to the
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adverse health outcomes. That is, for each
pollutant (Xit, i = 1,..,k), fit the model
log(µt) = confounderst + β1Xit.

2. For each of the k models fit in step 1, note
the absolute value of Wald’s statistic [w =
|b1/SE(b1)|]. Order the pollutant variables
from most important to least important
based on decreasing values of w. Denote
this ordered list of pollutant variables X[i],
i = 1,..,k, where X[i] corresponds to the pol-
lutant with the ith largest value of w.

3. Using the first 90% of the data, fit the fol-
lowing k+1 models: log(µt) = confounderst +
β1Qit, i = 0,1,..,k, where Qit, i = 1,..,k corre-
sponds to the first principal component of
the pollutants X[1],..,X[k] and Q0t = 0, which
corresponds to fitting a model with no pollu-
tants, i.e., the model log(µt) = confounderst.

4. Using the remaining 10% of the data, calcu-
late the prediction error for each of these
k+1 models, and select as the “best” of these
models that with the smallest estimated pre-
diction error.

5. Refit the best model using all the data, that
is, fit the model log(µt) = confounderst +
β1Qst, where s corresponds to the best model.
Step 3 in the above algorithm could be

implemented using more than the first princi-
pal component variable. However, for the rea-
sons discussed in our implementation of the
PCA model, we have decided to use only the
first principal component variable. The
advantage of the SPCA procedure over PCA
is that pollutants not associated or only
weakly associated with the adverse health out-
comes have a significant chance of being
excluded from the chosen model. Hereafter,
our implementation of SPCA using the above
algorithm will be referred to as the “SPCA
model.”

Simulation Study

To conduct the simulations, we required a
way of generating realistic mortality time
series with known air pollution mortality
effects. We used a method previously shown
to generate realistic mortality time series
(Roberts and Martin 2006b), which proceeds
by fitting the following Poisson log-linear
model similar to those used in previous analy-
ses (Daniels et al. 2000), to the actual Cook
County (Chicago), Illinois, mortality and
meteorologic time-series data:

Yt ~ Poisson(ωt)
log(ωt) = confounderst + θ(α1X1t + α2X2t

+ α3X3t + α4X4t + α5X5t),
confounderst = St1(time, 3 df per year) 

+ St2(temp0, 6 df) 
+ St3(temp1–3, 6 df) 
+ St4(dew0, 3 df ) 
+ St5(dew1–3, 3 df) 
+ γDOWt , [3]

where the t refers to the day of the study, Yt is
the simulated mortality count on day t and ωt
is the expected number of deaths on day t.
The quantities Sti() are smooth functions of
time, temperature (temp), and dew-point tem-
perature (dew) with the indicated degrees of
freedom (df). The smooth functions are repre-
sented using natural cubic splines. The quan-
tity temp0 is the current day’s mean 24-hr
temperature and temp1–3 is the average of the
previous 3 days’ 24-hr mean temperatures.
The values dew0 and dew1–3 are defined simi-
larly for the 24-hr mean dew-point tempera-
ture, and DOWt is a set of indicator variables
for the day of the week. The quantities Xit, i =
1,..,5, are, respectively, the current day’s daily
concentrations of PM10, NO2, CO, O3, and
SO2, αi, i = 1,..,5, are the prespecified weights
of each pollutant, and θ is the prespecified
effect of the air pollutant mixture (α1X1t +…+
α5X5t) on mortality. All the analyses in this
article were conducted using the statistical
package R (R Development Core Team
2006). For the reasons discussed above, the
GLMs along with natural cubic splines were
used to fit the PCA and SPCA models. The
offset option in the R GLM function was used
to permit the relationship between the pollu-
tants and mortality to be a priori specified and
included in the fitting process.

Fitting Model 3 produced an expected
mortality count for each day, ωt, that incor-
porated the effects of the five pollutants
through the explicitly specified relationship
θ(α1X1t +…+ α5X5t). Using these expected
mortality counts, the simulations proceeded
as follows:
1. Choose values for (θ, α1, α2, α3, α4, α5).
2. Using Model 3, compute expected mortal-

ity counts for each day, ωt, that incorporate
the pollutant effects selected in step 1.

3. Generate a mortality time series using a
Poisson model with mean ωt on day t. 

4. Fit the PCA model to the simulated mor-
tality time series; that is, fit the model
log(µt) = confounderst + β1Z1t to the simu-
lated mortality time series from step 3. 

5. Fit the SPCA model to the simulated mor-
tality time series, that is, using the simu-
lated mortality time series from step 3,
follow steps 1–5 in the description of the
SPCA model. This procedure results in a
final model of the form log(µt) = con-
founderst + β1Qst being fitted to the simu-
lated mortality time series. 

6. Repeat steps 3–5 1,000 times.
In the simulations, 13 (θ, α1, α2, α3, α4,

α5) combinations were used. For these 13
combinations, the effect of the air pollutant
mixture on mortality θ ranged from 0 to 0.1. A
θ value of 0.1 corresponds to approximately a
10% increase in mortality for a simultaneous
one standard deviation (SD) increment in the
concentration of each air pollutant. Tables 1–3
contain the results of the simulations. 

Table 1 shows clearly that in most situa-
tions SPCA performed appropriately in terms
of selecting the correct subset of pollutants
associated with mortality. In 9 of the 13 sce-
narios considered, SPCA selected the correct
subset of pollutants 75% or more of the time.
This is an important improvement over stan-
dard PCA, which by construction will never
exclude pollutants. Table 2 shows that for the
majority of cases considered, the bias of the
individual pollutant effect estimate obtained
from SPCA was smaller than the bias of the
corresponding estimate obtained from PCA.
The reduction in bias was particularly striking
for cases in which an individual pollutant was
unrelated to mortality. The smaller bias of the
SPCA estimates compared to the PCA
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Table 1. Number of pollutants retained by SPCA over sets of 1,000 simulations.

Effect No. of pollutants retained by SPCAb

(1,000 × θ)a 0 1 2 3 4 5 Percent correctc

All pollutants associated with mortality (α1 = α2 = α3 = α4 = α5 = 1/5) 
100 0 0 0 15 0 85 85
50 0 0 1 24 0 75 75
25 0 3 8 22 3 65 65
12.5 0 11 11 16 8 54 54

PM10, NO2, and CO associated with mortality (α1 = α2 = α3 = 1/3,α4 = α5 = 0) 
100 0 0 0 100 0 0 100
50 0 0 0 100 0 0 100
25 0 2 6 86 4 3 86
12.5 0 11 14 45 12 18 44

PM10 associated with mortality (α1 = 1,α2 = α3 = α4 = α5 = 0)
100 0 100 0 0 0 0 100
50 0 100 0 0 0 0 100
25 0 100 0 0 0 0 100
12.5 0 94 5 1 0 0 94

No pollutant associated with mortality (α1 = α2 = α3 = α4 = α5 = 0)
0 30 27 16 9 8 10 30

a1,000× the actual values of θ used to generate mortality. bThe percentage of time over each set of 1,000 simulations that
a subset of pollutants of a particular size was retained by SPCA. cThe percentage of time over each set of simulations that
SPCA retained the correct subset of pollutants. The corresponding values for PCA will be 100% for the cases in which all
pollutants were associated with mortality and 0% for all other cases.



estimates is because pollutants unrelated to
mortality are retained by PCA; these unrelated
pollutants explain by chance some of the
morality effect that should be attributed to
pollutants that are actually associated with
mortality. However, the ability of SPCA to
exclude pollutants is not without cost. The
ability of SPCA to exclude pollutants means
that the weights it assigns to each pollutant in
the derived pollutant variable (Qst) are random,
unlike the constant weights assigned by PCA.
The random nature of the SPCA weights will
typically result in the estimates obtained from
SPCA having a larger variance than the corre-
sponding estimates obtained from PCA. The
increased variance is evidenced in Table 2,
where for the majority of cases considered,
the SD of the individual pollutant effect esti-
mate obtained from SPCA is larger than the
SD of the corresponding estimate obtained
from PCA.

The root-mean-squared error (rmse) is a
measure of the average “closeness” of an esti-
mator to the value that is being estimated;
smaller values of the rmse correspond to “bet-
ter” estimators. The rmse values in Table 3
indicate that SPCA produced better estimates
or estimates with smaller error in slightly more
than half of the cases considered. For these
cases the increased variance of the SPCA esti-
mates was more than compensated for by a
reduction in bias. Perhaps more important,
the rmse values for SPCA were much more
stable under different simulation scenarios
than the rmse values for PCA; the rmse values
for SPCA ranged from 0 to 12.06 with a
median of 1.71, whereas the rmse values for
PCA ranged from 0.33 to 80.99 with a
median of 2.58. This tells us that the benefits
of using SPCA instead of PCA, in terms of
both bias and the average closeness of the asso-
ciated estimates to their true values, outweigh
the disadvantage in terms of variance alone of

using SPCA instead of PCA. This suggests
that aside from providing useful information
on which pollutants are unrelated to mortality
that the SPCA model has the additional bene-
fit over the PCA model of producing estimates
with smaller error on average.

Application

In this section the data from the nine cities
described previously are used to illustrate the
use of the SPCA model compared to the PCA
model in the multiple pollutant context. For
both models, the confounder adjustments
used had the same specification described in
the previous section for Model 3. Table 4
contains the results of fitting the models to
the data from each city. Table 5 provides cor-
relation matrices of the data from two of the
nine cities considered—Cleveland, Ohio, and
Nashville, Tennessee. The correlation matri-
ces for these two cities are shown because they

correspond to the two cities where the SPCA
model retained the least (zero pollutants) and
most (four pollutants) pollutants, respectively. 

The results obtained from the two meth-
ods differ substantially, as for each city SPCA
concluded that one or more of the five pollu-
tants were not sufficiently associated with
mortality to warrant inclusion. This in turn
results in the two methods returning different
estimates for the effect of air pollution on
mortality. Since the results of the simulation
study suggested that SPCA was successful in
the majority of cases in determining the cor-
rect subset but not necessarily the magnitude
of pollutants associated with mortality, the
results obtained with SPCA are likely more
reliable than those obtained with PCA. For
example, for the Chicago data, SPCA con-
cluded that only O3 was associated with mor-
tality and gave it a loading of one, while PCA
gave each pollutant a roughly equal loading.
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Table 2. Bias and SD of the individual pollutant effect estimates obtained from SPCA and PCA over sets of 1,000 simulations.

Efffect PM10 NO2 CO O3 SO2
(1,000 × θ)a Biasb SDc Bias SD Bias SD Bias SD Bias SD

All pollutants associated with mortality (α1 = α2 = α3 = α4 = α5 = 1/5)
100 –0.09 (–0.50) 1.08 (0.53) 4.28 (3.48) 1.95 (0.64) 0 (–1.04) 2.47 (0.51) –11.51 (–9.98) 3.62 (0.27) –3.44 (–0.47) 7.06 (0.53)
50 0.46 (–0.09) 1.60 (0.53) 2.71 (1.94) 1.73 (0.64) 0.36 (–0.36) 2.13 (0.51) –6.20 (–4.91) 2.23 (0.27) –2.60 (–0.07) 4.35 (0.53)
25 1.18 (0.13) 2.47 (0.55) 1.63 (1.17) 2.03 (0.66) 0.05 (–0.02) 2.07 (0.53) –3.15 (–2.37) 1.39 (0.28) –1.67 (0.13) 2.50 (0.55)
12.5 1.55 (0.24) 2.63 (0.53) 0.80 (0.81) 1.72 (0.64) –0.01 (0.17) 1.59 (0.52) –1.34 (–1.09) 1.08 (0.27) –0.90 (0.25) 1.46 (0.53)

PM, NO2, and CO associated with mortality (α1 = α2 = α3 = 1/3,α4 = α5 = 0)
100 –4.78 (–9.95) 0.62 (0.53) 3.61 (–5.18) 0.80 (0.64) –0.19 (–10.6) 0.72 (0.52) 0 (12.01) 0 (0.27) 0 (23.4) 0 (0.53)
50 –2.06 (–4.84) 0.83 (0.51) 2.18 (–2.43) 1.01 (0.62) 0.22 (–5.17) 1.06 (0.50) 0 (6.07) 0 (0.26) 0 (11.8) 0 (0.51)
25 –0.23 (–2.27) 2.09 (0.54) 1.24 (–1.03) 2.08 (0.65) –0.02 (–2.43) 2.28 (0.52) 0.26 (3.12) 1.03 (0.28) 0.17 (6.08) 1.01 (0.54)
12.5 1.18 (–0.98) 2.87 (0.55) 0.25 (–0.33) 2.26 (0.66) –0.52 (–1.07) 2.15 (0.53) 0.65 (1.64) 1.04 (0.28) 0.57 (3.19) 1.25 (0.55)

PM associated with mortality (α1 = 1,α2 = α3 = α4 = α5 = 0)
100 –1.76 (–80.99) 1.62 (0.52) 0 (22.90) 0 (0.62) 0 (18.50) 0 (0.50) 0 (9.77) 0 (0.27) 0 (19.1) 0 (0.52)
50 0.61 (–40.51) 1.77 (0.52) 0 (11.43) 0 (0.63) 0 (9.23) 0 (0.51) 0 (4.87) 0 (0.27) 0 (9.5) 0 (0.52)
25 1.99 (–20.12) 1.84 (0.52) 0 (5.88) 0 (0.63) 0 (4.75) 0 (0.51) 0.05 (2.51) 0.97 (0.27) 0 (4.89) 0 (0.52)
12.5 2.29 (–9.90) 2.31 (0.55) 0.03 (3.13) 0.45 (0.66) 0.02 (2.52) 0.32 (0.54) 0.50 (1.33) 2.10 (0.28) 0 (2.6) 0 (0.55)

No pollutant associated with mortality (α1 = α2 = α3 = α4 = α5 = 0)
0 0.80 (0.34) 1.62 (0.54) 0.29 (0.41) 0.75 (0.64) 0.38 (0.33) 0.87 (0.52) 0.14 (0.18) 0.90 (0.27) –0.10 (0.34) 1.03 (0.54)

a1,000× the actual values of θ used to generate mortality. b1,000× the bias of the estimated individual pollutant effects obtained from SPCA. The bias for PCA appears in parentheses.
c1,000× the SD of the estimated individual pollutant effects obtained from SPCA. The SD for PCA appears in parentheses. 

Table 3. Root-mean-squared error of the individual pollutant effect estimates obtained from SPCA and PCA
over sets of 1,000 simulations.

Effect
(1,000 × θ)a PM10 NO2 CO O3 SO2

All pollutants associated with mortality (α1 = α2 = α3 = α4 = α5 = 1/5)
100 1.08 (0.73)b 4.70 (3.54) 2.46 (1.16) 12.06 (9.98) 7.85 (0.71)
50 1.66 (0.54) 3.22 (2.04) 2.16 (0.63) 6.59 (4.91) 5.06 (0.53)
25 2.73 (0.56) 2.60 (1.35) 2.07 (0.53) 3.44 (2.38) 3.01 (0.57)
12.5 3.05 (0.58) 1.90 (1.03) 1.58 (0.54) 1.71 (1.12) 1.72 (0.59)

PM, NO2, and CO associated with mortality (α1 = α2 = α3 = 1/3, α4 = α5 = 0)
100 4.82 (9.97) 3.70 (5.22) 0.74 (10.61) 0 (12.02) 0 (23.43)
50 2.23 (4.87) 2.40 (2.5) 1.08 (5.19) 0 (6.08) 0 (11.86)
25 2.10 (2.33) 2.42 (1.21) 2.28 (2.49) 1.06 (3.13) 1.02 (6.10)
12.5 3.10 (1.12) 2.28 (0.74) 2.21 (1.19) 1.23 (1.66) 1.37 (3.24)

PM associated with mortality (α1 = 1,α2 = α3 = α4 = α5 = 0)
100 2.39 (80.99) 0 (22.91) 0 (18.50) 0 (9.77) 0 (19.06)
50 1.88 (40.52) 0 (11.44) 0 (9.24) 0 (4.88) 0 (9.52)
25 2.71 (20.12) 0 (5.92) 0 (4.78) 0.97 (2.52) 0 (4.92)
12.5 3.25 (9.92) 0.45 (3.20) 0.32 (2.58) 2.16 (1.36) 0 (2.66)

No pollutant associated with mortality (α1 = α2 = α3 = α4 = α5 = 0)
0 1.80 (0.63) 0.80 (0.76) 0.95 (0.62) 0.91 (0.33) 1.04 (0.64)

a1,000× the actual values of θ used to generate mortality. b1,000× the root-mean-squared error of the estimated individual
pollutant effects obtained from SPCA. The root-mean-squared error for PCA appears in parentheses. 
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In this situation the effect estimate obtained
using PCA is likely biased because the mix-
ture of pollutants on which this estimate is
based contains a number of pollutants that
may be unrelated to mortality. 

The results from the SPCA model reveal
interesting interpretations from the analysis
about the effects of the five air pollutants on
mortality in the nine cities considered, specifi-
cally highlighting when a particular pollutant
appears unrelated to mortality. This insight is

unavailable from the results of the PCA
model, which invariably implicates all five
pollutants albeit with differing weights. In all
cities SPCA suggests that the pollutant mix-
ture associated with daily mortality consists of
only a subset of the five pollutants considered.
Additionally, in Cleveland, Ohio; Houston,
Texas; and Salt Lake City, Utah, none of the
pollutants was found to be associated with
mortality. This additional information could
prove valuable to researchers interested in

determining the specific pollutants associated
with increased mortality in particular regions.
Of course, a question of considerable interest
raised by the SPCA results is why a particular
pollutant, for example, PM10, is found to be
associated with mortality in some cities but
not in others. 

The correlation matrices in Table 5 sug-
gest reasons for the weights or loadings
assigned to each pollutant by the PCA and
SPCA models. In Cleveland the five pollu-
tants considered are all interrelated to roughly
the same extent, which results in the first
PCA variable, or first derived variable (as seen
in Table 4), giving each pollutant roughly
equal loading or weight. In Cleveland, SPCA
did not retain any pollutants, but the correla-
tion structure of the pollutants for this city
indicates that, like PCA, any pollutants
retained by SPCA would have received a
roughly equal loading. However, in Nashville
because SO2 is essentially unrelated to the
other pollutants, it is given a relatively small
weight in both the first derived SPCA and
PCA variables. 

Discussion

Principal component analysis is a commonly
used remedial measure for multicollinearity.
The generally high positive correlation that
exists between ambient air pollutants makes
PCA a useful tool for multiple pollutant time-
series studies. However, the use of PCA for
this purpose raises concerns, of which the pri-
mary concern is that PCA invariably includes
all pollutants in the selected mixture of air pol-
lutants. A modified version of SPCA was
shown to successfully deal with this problem,
allowing a subset of the pollutants to con-
tribute to a mixture related to the adverse
health outcomes of interest. A shortcoming of
SPCA, like PCA, is that once SPCA has
selected the appropriate subset of pollutants,
the loadings applied to each pollutant in the
subset are also assigned without regard to the
adverse health outcomes of interest. An inter-
esting article by Hadi and Lin (1998) provides
further cautionary notes on the use of PCA,
many of which are also applicable to SPCA. 

In this article we have considered only the
implementation of PCA and SPCA using the
first derived variable, that is, the first principal
component of all five pollutants for PCA and
the first principal component of the retained
pollutants for SPCA. We made this choice
because for the pollutant data used in this arti-
cle, the first derived variable captured a signifi-
cant proportion of the variability and using
only a single derived variable provides a single
linear combination of pollutants to be inter-
preted. This simplification also allowed a more
concise description of the new methodology.
If more than one derived variable is used,
it will be necessary to interpret other linear

Table 4. Results of fitting PCA and SPCA to the data from nine U.S. cities for 1987–2000.

Pollutant loadingsa

City PM10 NO2 CO O3 SO2 Total effectb

Chicago, IL
SPCA 0 0 0 1 0 0.005 (0.003)
PCA 0.466 0.556 0.45 0.231 0.467 –0.001 (0.003)

Cleveland, OH 
SPCA 0 0 0 0 0 0 (0)
PCA 0.496 0.512 0.437 0.351 0.42 –0.002 (0.006)

Denver, CO
SPCA 0 –0.645 –0.678 0.353 0 0.013 (0.004)
PCA 0.484 0.515 0.536 –0.155 0.435 0.014 (0.006)

El Paso, TX
SPCA 0 0.707 0 0.707 0 –0.023 (0.009)
PCA 0.493 0.538 0.573 0.128 0.35 –0.015 (0.01)

Houston, TX
SPCA 0 0 0 0 0 0 (0)
PCA 0.281 0.56 0.516 0.354 0.465 0.002 (0.008)

Jersey City, NJ 
SPCA 0.707 0 0 0.707 0 –0.006 (0.015)
PCA 0.487 0.522 0.502 0.046 0.485 –0.004 (0.012)

Nashville, TN
SPCA 0.587 0.568 0.552 0 0.168 –0.023 (0.010)
PCA 0.606 0.542 0.432 0.380 0.094 –0.023 (0.011)

Pittsburgh, PA
SPCA 1 0 0 0 0 0.005 (0.003)
PCA 0.512 0.53 0.486 0.196 0.427 0 (0.004)

Salt Lake City, UT 
SPCA 0 0 0 0 0 0 (0)
PCA 0.415 0.54 0.539 –0.105 0.484 –0.022 (0.012)

aThe loadings given to each pollutant by SPCA and PCA. A loading of 0 for SPCA means that the pollutant was not
included in the subset of pollutants retained by SPCA. bThe estimated increase in mortality (± SE) for a simultaneous 1 SD
increment in the concentration of each pollutant. 100× this value is approximately the percentage increase in mortality.
SEs of these estimated effects are in parentheses.

Table 5. Pairwise correlations between the mortality (Mort), temperature (Temp), dewpoint temperature
(Dew), and pollutant time-series data for Cleveland, OH, and Nashville, TN.

Morta Tempb Dewc PM10 O3 NO2 SO2 CO

Cleveland, OH
Mort 1 –0.07 –0.07 0.04 –0.02 0.02 0.02 0.03
Temp –0.07 1 0.91 0.41 0.66 0.09 0.04 0.02
Dew –0.07 0.91 1 0.36 0.52 0.07 –0.02 0.04
PM10 0.04 0.41 0.36 1 0.56 0.63 0.48 0.48
O3 –0.02 0.66 0.52 0.56 1 0.36 0.26 0.21
NO2 0.02 0.09 0.07 0.63 0.36 1 0.56 0.67
SO2 0.02 0.04 –0.02 0.48 0.26 0.56 1 0.4
CO 0.03 0.02 0.04 0.48 0.21 0.67 0.40 1

Nashville, TN
Mort 1 –0.19 –0.18 –0.07 –0.11 –0.04 0.03 0.01
Temp –0.19 1 0.94 0.33 0.69 0.11 –0.23 –0.22
Dew –0.18 0.94 1 0.31 0.56 0.08 –0.24 –0.22
PM10 –0.07 0.33 0.31 1 0.45 0.44 0.08 0.40
O3 –0.11 0.69 0.56 0.45 1 0.26 –0.1 –0.07
NO2 –0.04 0.11 0.08 0.44 0.26 1 0.08 0.36
SO2 0.03 –0.23 –0.24 0.08 –0.10 0.08 1 0.08
CO 0.01 –0.22 –0.22 0.4 –0.07 0.36 0.08 1

aNonaccidental daily deaths of individuals ≥ 65 years of age. bThe current day’s mean 24-hr temperature. cThe current
day’s mean 24-hr dew point temperature.



combinations of pollutants, combinations that
often do not have an intuitive interpretation
and that explain a relatively small proportion
of overall variability. Of course, both the PCA
and SPCA methods can be extended to con-
sider more than a single derived variable.
Indeed, the inclusion of additional derived
pollutant variables in either or both PCA and
SPCA may result in improved performance in
terms of the bias and variance properties of the
resulting pollutant effect estimates. For exam-
ple, if the first derived variable in a PCA gives
large weights to pollutants unrelated to mor-
tality compared with those actually associated
with mortality, then including additional
derived variables may result in improved esti-
mates. However, for reasons of brevity and
clarity, we elected to consider only the first
derived variable in each case in describing the
proposed methodology.

A number of different methodologies have
been used to investigate the mixture of pollu-
tants associated with an adverse health out-
come. Hong et al. (1999) used a number of air
pollution indices to evaluate the combined
effects of various air pollutants. The indices
used by Hong et al. were selected a priori and
gave each pollutant included in the air pollu-
tant index equal weight. This method is simi-
lar to using the first PCA of the multiple
pollutants to estimate the adverse health
effects of the multiple pollutants. The Hong
et al. (1999) method possibly could be
improved by using the same methodology
employed in SPCA to remove unrelated pollu-
tants. Other articles have investigated the mix-
ture of pollutants associated with adverse
health outcomes by assigning weights to each
air pollutant that were explicitly estimated
during the fitting process and constrained to
sum to one (Roberts 2006a, 2006b). These
weighted methods have benefits over both
PCA and SPCA in that the loadings assigned
to each pollutant depend on the adverse health
outcomes. The disadvantage of the weighted
methods is that they do not avoid the problem
of unstable parameter estimates that can arise
because of the positive correlation among pol-
lutants. Each of these methods has merit, but
in each case a key factor in whether the
method appropriately deals with individual
pollutants is the extent to which the pollutants
are correlated with one another. In the
presence of high intercorrelation among the

pollutants, SPCA offers a critical advantage
over these techniques. Another recent study
investigated the use of the “shrinkage meth-
ods” ridge regression and the lasso for use in
assessing the adverse health effects of multiple
pollutants (Roberts and Martin 2005). Ridge
regression and the lasso are methods that can
be applied in a regression setting when some
predictor variables are highly correlated. Again,
these two methods have advantages over both
PCA and SPCA in that the loadings assigned
to each pollutant are dependent on the adverse
health outcomes. However, an important
advantage SPCA has over these shrinkage
methods is that it is often able to successfully
select the correct subset of pollutants that are
associated with mortality. SPCA can be con-
sidered a method positioned somewhere
between the shrinkage-based methods and the
weighted methods. Like the shrinkage meth-
ods, SPCA is able to avoid unstable parameter
estimates due to multicollinearity, and like the
weighted methods it is often able to success-
fully select the correct subset of pollutants that
are associated with mortality.
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