
Logical Methods in Computer Science
Vol. 2 (2:4) 2006, pp. 1–24
www.lmcs-online.org

Submitted Jul. 5, 2005
Published Apr. 3, 2006

A SYSTEM OF INTERACTION AND STRUCTURE II:
THE NEED FOR DEEP INFERENCE

ALWEN TIU

Computer Science Laboratory, Research School in Information Science and Engineering, Australian
National University, Canberra ACT 0200, Australia.
e-mail address: Alwen.Tiu@rsise.anu.edu.au

Abstract. This paper studies properties of the logic , which is an extension of multi-
plicative linear logic (MLL) with a self-dual non-commutative operator. is presented
in the calculus of structures, a proof theoretic formalism that supports deep inference,
in which inference rules can be applied anywhere inside logical expressions. The use of
deep inference results in a simple logical system for MLL extended with the self-dual non-
commutative operator, which has been to date not known to be expressible in sequent
calculus. In this paper, deep inference is shown to be crucial for the logic , that is,
any restriction on the “depth” of the inference rules of would result in a strictly less
expressive logical system.

1. Introduction

This paper is the second part of a planned series of papers on the calculus of structures,
started in [Gug02]. The calculus of structures is a new formalism for presenting logics. It
is a generalization of the one-sided sequent calculus (also known as Gentzen-Shütte sequent
calculus [TS96]). One of the main features of the calculus of structures is that it allows deep
inference, i.e., inference rules in the calculus of structures can be applied arbitrarily deep
inside logical expressions. This is in contrast with the traditional logical rules in sequent
calculus, as in, e.g., Gentzen’s LK [Gen69] or Girard’s linear logic [Gir87], where the logical
rules manipulate only the topmost connectives of the formulas. In [Gug02], and several other
related works (e.g., [BT01, GS01, Brü03, Str03]), it is shown that deep inference gives rise to
a number of interesting proof theoretical properties for the logical systems formalized in the
calculus of structures that are not observable in systems without deep inference. However,
if one is concerned only with provability of logical expressions, deep inference might seem to
introduce unnecessary non-determinism into proof search (although this problem has been
partly addressed in [Gug02], using a technique called splitting). The work presented in this
paper had started with the conjecture that deep inference is not necessary for provability;
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a conjecture which turns out to be wrong. We present a counterexample, a class of logical
expressions in System [Gug02], an extension of multiplicative linear logic with a self-dual
non-commutative connective, which is provable only if there is no fixed bound to the depth
of the applicability of the rules in , and hence rule out any candidate “shallow system”
for .

The main result of this paper can be seen as a first technical argument to the claim
that deep inference is a non-trivial extension to the traditional sequent calculus, in the sense
that it allows for a simple formulation of a logic, which does not admit any straightforward
formulation in sequent calculus without deep inference. By “sequent calculus without deep
inference” we have in mind sequent systems with list-like contexts and whose logical rules
manipulate only the topmost connectives. We regard such systems as a subset of shallow
systems, the precise definition of which is given in Section 6. There are calculi other than
the calculus of structures which also employ some sort of deep inference, notably, the logic
of bunched implication [OP99] and the display calculus [Bel82], where the context of the
sequent is a tree-like structure and inference rules can access any part of the tree. But
there has been so far no technical analyses in those calculi concerning the necessity of deep
inference.

We hope also to shed light on the known open problem of the sequentialization of
Retoré’s Pomset logic [Ret97]. Pomset logic is an extension of multiplicative linear logic with
a self-dual non-commutative connective. It is presented in the calculus of proofnets [Gir87],
and there has to date been no known sequentialization theorem yet. The logic and
Pomset logic are closely related; in fact, there is a sound translation from to Pomset
logic preserving provability [Str03]. We conjecture that they are actually the same logic.
The result on the necessity of deep-inference of therefore explains to some extent the
difficulty in the sequentialization of Pomset logic.

This paper is organised as follows. In Section 2, we define structures, the analog to
sequents in sequent calculus. This is then followed by a presentation of System in
Section 3. Section 4 gives an overview of the main idea behind the proof of the necessity of
deep inference, that is, the construction of a class of provable structures in which serve as
the counterexample that rules out any candidate shallow system for . The formal proof
for the necessity of deep inference relies on a graph representation of structures, called the
relation webs [Gug02], which is reviewed in Section 5. Section 6 gives a technical definition
of shallow systems. In Section 7 we prove formally the necessity of deep-inference for System

: for every candidate shallow system for , there is a structure provable in but not
provable in that candidate system. Section 8 concludes the paper.

2. Structures

The logical expressions in the calculus of structures are called structures. A structure
can be seen as representing a class of logical formulas, where each logical connective corre-
sponds to a unique structure-forming relation, or structural relation. This is similar to the
reading of sequents in sequent calculus: a (one-sided) sequent ! A,B in linear logic can be
seen as representing both the formulas A ! B and B ! A, interpreting the ‘,’ (comma) in
the sequent as !. However, unlike sequent calculus, since each connective is assigned its
own structural relation, the distinction between connectives and strutural relations are not
particularly relevant if we consider only the combinatorial properties of the logical systems
in the calculus of structures (e.g., permutability, cut-elimination, etc.). We are therefore
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Associativity

[ !R, [ !T ] ] = [ !R, !T ]
(!R, (!T )) = (!R, !T )

〈!R; 〈!T 〉; !U 〉 = 〈!R; !T ; !U 〉

Unit

[◦, !R] = [ !R]
(◦, !R) = (!R)

〈◦; !R〉 = 〈!R; ◦〉 = 〈!R〉

Singleton

[R] = (R) = 〈R〉 = R

Commutativity

[ !R, !T ] = [ !T , !R]
(!R, !T ) = (!T , !R)

Negation

◦̄ = ◦
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)
(R1, . . . , Rh) = [R̄1, . . . , R̄h ]
〈R1; . . . ;Rh〉 = 〈R̄1; . . . ; R̄h〉

¯̄R = R

Contextual Closure

if R = T then S{R} = S{T}

Figure 1: Syntactic equivalence =

contend with having just structures as the only syntactical expressions of the logical systems
in calculus of structures. The class of structures we are interested in is the following.

Definition 2.1. There are infinitely many positive atoms and negative atoms. Atoms,
positive or negative, are denoted by a, b, . . . . Structures are denoted by S, P , Q, R, T , U
and V . The structures of the language are generated by

S ::= a | ◦ | [ S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | S̄ ,

where ◦, the unit, is not an atom; [S1, . . . , Sh ] is a par structure, (S1, . . . , Sh) is a copar
structure and 〈S1; . . . ;Sh〉 is a seq structure; S̄ is the negation of the structure S. Structures
with a hole not occuring in the scope of a negation are denoted by S{ }. The structure R
is a substructure of S{R}, and S{ } is its context.

The par and co-par structural relations correspond to the ! and the " connectives in
linear logic [Gir87], while the seq-relation is a self-dual non-commutative connective. We
often omit the curly braces in a structure context in cases where structural parentheses fill
the hole exactly: for example, we shall write S [R,T ] to mean S{[R,T ]}.

Definition 2.2. The structures of the language are equivalent modulo the relation =,
defined in Figure 1. There, !R, !T and !U stand for finite, non-empty sequences of structures
(sequences may contain ‘,’ or ‘;’ separators as appropriate in the context). A structure S is
in normal form when either S = ◦ or there is no unit ◦ appearing in it and the only negated
structures appearing in it are atoms. Similarly, a structure context S{ } is in normal form
when there is no unit ◦ appearing in it and the only negated structures appearing in it are
atoms. Given a structure S, we talk about the atom occurrences of S when we consider
all the atoms appearing in S as distinct. Therefore, in the structure 〈a; a〉 there are two
different occurrences of the atom a. The set of all the atom occurrences in S is denoted
with S.

We shall now define precisely the depth of a structure context. This definition will
come handy later when proving various properties related to the depth of inference rules.
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S{◦}
↓

S [a, ā]

S(a, ā)
↑

S{◦}

S〈[R,T ]; [R′, T ′ ]〉
↓

S [〈R;R′〉, 〈T ;T ′〉]

S(〈R;T 〉, 〈R′;T ′〉)
↑

S〈(R,R′); (T, T ′)〉

S([R,T ], R′)

S [(R,R′), T ]

Figure 2: System

Note that since structures and structure contexts are considered modulo associativity and
commutativity (for par and co-par), the depth of a structure context is also considered
modulo these equalities. In its normal form, a structure can be viewed as a finitely branching
tree. A structure context is then a particular tree with a hole { } as a leaf. The depth is
measured as the length of the branch ending with { }. The formal definition is as follows.

Definition 2.3. Let S{ } be a normal structure context. The depth of S{ } is defined as
follows:

(1) depth { } = 0,

(2) depth [S1, S2{ }] =

{

depth S2{ }, if S2{ } = [S′
2, S

′′
2{ }],

depth S2{ } + 1, otherwise,

(3) depth (S1, S2{ }) =

{

depth S2{ }, if S2{ } = (S′
2, S

′′
2{ }),

depth S2{ } + 1, otherwise,

(4) depth 〈S1;S2{ }〉 =







depth S2{ }, if S2{ } = 〈S′
2;S

′′
2{ }〉

or S2{ } = 〈S′
2{ };S′′

2 〉,

depth S2{ } + 1, otherwise,

(5) depth 〈S1{ };S2〉 =









depth S1{ }, if S1{ } = 〈S′
1;S

′′
1{ }〉

or S1{ } = 〈S′
1{ };S′′

1 〉,

depth S1{ } + 1, otherwise.

For example, the structure context [a, b, { }] has depth 1 and [〈{ }; c〉, 〈b; c〉] has depth
2. A structure R is said to occur at depth n in S{R} if n is the depth of S{ }.

3. System

In this section, we review some key concepts and terminologies in the calculus of struc-
tures and present System .

Recall that we associate to each connective a structural relation. This has a consequence
on the shape of inference rules in the calculus of structures: there is basically no need for
branching inference rules, i.e., inference rules with more than one premise. Derivations in
the calculus of structures are sequences of inference rules, instead of tree-shape structures.
Consider for example the following tensor rule of linear logic in sequent calculus:

! A,Φ ! B,Ψ
"

! A " B,Φ,Ψ
.

In the calculus of structure, we would present the rule as something like

([A,Φ], [B,Ψ])
"

[(A,B),Φ,Ψ]
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Here we use the par structural relation to interpret ! and the co-par to interpret ". This
simulation of the tensor rule in the calculus of structures can be generalized to arbitrary one-
sided sequent systems. This idea has been used to simulate several known sequent systems
inside the calculus of structures (see e.g., [BT01, Str03]), through which the cut-elimination
results are obtained for the corresponding systems in the calculus of structures.

Another important feature of the calculus of structures is that it allows deep inference.
Inference rules can be applied to any substructure of a given structure. Thus, inference
rules in the calculus of structures can be seen as rewrite rules on structures. This is in
contrast to traditional sequent systems where introduction rules are usually applied to the
topmost connectives of formulas. Typical rules in the calculus of structures have the form:

S{T}
ρ

S{R}

where ρ is the name of the rule, R and T are structures and S{ } is a structure context.
Common to all systems already studied in the calculus of structures are the interaction
rules:

S{◦}
↓

S [R,R]
and

S(R,R)
↑

S{◦}

which correspond to the identity rule and the cut rule in sequent calculus, respectively.
We shall now define precisely System with its notions of inference rules, derivations

and proofs.

Definition 3.1. An inference rule is a scheme
T

ρ
R

, where ρ is the name of the rule, T

is its premise and R is its conclusion. Rule names are denoted by ρ and π. A formal
system, denoted by S , is a set of rules. A derivation in a system S is a finite chain of
instances of rules of S , and is denoted by ∆. A derivation can consist of just one structure.
The topmost structure in a derivation is called its premise; the lowest structure is called
conclusion. A derivation ∆ whose premise and conclusion are T and R, and whose rules are

in S is denoted by
T

R
S∆ . An instance of a rule

T
ρ

R
is called non-trivial if R '= T , otherwise

it is trivial.

Definition 3.2. System [GS01] is shown in Figure 2. The rules in are of the form
S{T}

ρ
S{R}

. The structure R is called redex and the structure T is called contractum.

The rules ↓ and ↑ are the atomic versions of the more general interaction rules ↓
and ↑. The non-atomic interaction rules can be reduced to the atomic ones, as shown in
[GS01]. System consists of a down fragment { ↓, , ↓} and an up fragment { ↑, , ↑}.
The rules ↓ and ↑ in the up fragment are admissible (for proofs) as a consequence of the
cut elimination theorem for this system [Gug02]. Therefore, it is enough to study the down
fragment for its proof search properties. We need an extra rule, a logical axiom rule, to
define proofs in .

Definition 3.3. The down fragment of , together with the rule ◦↓
◦

, is called System
(Figure 3).
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◦↓
◦

S{◦}
↓

S [a, ā]

S([R,T ], R′)

S [(R,R′), T ]

S〈[R,T ]; [R′, T ′ ]〉
↓

S [〈R;R′〉, 〈T ;T ′〉]

Figure 3: System

Definition 3.4. A proof, denoted by Π, is a derivation whose top is an instance of ◦↓. A

system S proves R if there is in S a proof Π whose conclusion is R, written
R

SΠ . The

length of a proof Π is the number of occurrences of inference rules in Π. Two systems are
equivalent if they prove the same structures.

Given a provable structure in , we can remove all the dual instances of atoms, except
maybe for some pairs, and get another provable structure. In this way, we can see whether
there are certain local properties obeyed by all provable structures. This will be useful later
when proving the necessity of deep inference (see Section 7).

Proposition 3.5. If there is a derivation

T{◦}
↓

T [a, ā]

R
∆

then there is a derivation
T{◦}

R′
∆′

where R′ and ∆′ are obtained from R and ∆, respectively, by replacing the atom occurrences
a and ā with units.

Proof. By simple induction on the length of ∆.

4. Overview of the Counterexample

The counterexample is based on the structure

[〈[a, b]; c〉, 〈ā; [b̄, c̄]〉],

which we shall refer to as S0. In order to prove the structure, all dual pairs of atoms must
be brought into the same par substructures so that the interaction rule ↓ can be applied.
It is quite obvious that more than one application of inference rules in is needed to bring
the dual pairs of atoms into the same par substructures. For instance, to bring a and ā into
the same substructure (via the ↓ rule), the par substructure [a, b] needs to be changed to
〈a; b〉 first. The same observation applies to the substructure [b̄, c̄]: it must be changed to
〈b̄; c̄〉 first before c can be brought into the same par substructure with c̄. It can be shown
that S0 has the following property: all of its proofs must begin with (reading the proofs
bottom up) either the substructure [a, b] or [b̄, c̄] as the redex. A proof of S0 is given in
Figure 4, where the first redex is the substructure [a, b] (modulo structure equality). The
underlined substructures in the proof are redexes of the rules. The equality sign in the rules
indicates applications of structure equalities. There is another proof of S0 which is not
shown and which starts with [b̄, c̄] as the redex. The substructures [a, b] and [b̄, c̄] occur at
depth 2 in S0. Therefore this structure is provable in a given candidate shallow system for

only if the proof system allows for rules which apply beyond depth 2 in the structure
(the notion of the depth of inference rules will be made precise later).
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◦↓
◦

=
〈◦; ◦〉

↓
〈[b, b̄]; ◦〉

↓
〈[b, b̄]; [c, c̄]〉

=
〈[b, b̄, ◦]; [c, c̄]〉

↓
[〈[b, b̄]; c〉, 〈◦; c̄〉]

=
[〈[b, b̄]; [c, ◦]〉, c̄]

↓
[〈b; c〉, 〈b̄; ◦〉, c̄]

=
[〈b; c〉, b̄, c̄]

=
〈◦; [〈b; c〉, b̄, c̄]〉

↓
〈[a, ā]; [〈b; c〉, b̄, c̄]〉

↓
[〈a; b; c〉, 〈ā; [b̄, c̄]〉]

=
[〈〈[a, ◦]; [◦, b]〉; c〉, 〈ā; [b̄, c̄]〉]

↓
[〈[〈a; ◦〉, 〈◦; b〉]; c〉, 〈ā; [b̄, c̄]〉]

= .
[〈[a, b]; c〉, 〈ā; [b̄, c̄]〉]

Figure 4: A proof of the S0 structure

Another interesting property of the S0 structure is that it can be superimposed with
itself, forming a bigger structure such that its proofs must begin with an innermost par
substructure as the redex. We illustrate here how such structures can be constructed, the
formal definition will be given in Section 7. Consider the following “parameterized’ S0:

[〈[a, b,R]; c〉, 〈ā; [b̄, c̄, T ]〉].

We denote with S0{U}{V } the above structure with U replacing R and V replacing T. The
following structure is a superimposition of three S0 structures, which we call S1:

[〈S0{a1}{b1}; c1〉, 〈ā1;S0{b̄1}{c̄1}〉].

A proof of S1 can be constructed from the schematic derivation of the parameterized S0

in Figure 5. That is, we apply the derivation scheme to the substructures S0{a1}{b1} and
S0{b̄1}{c̄1}, yielding the structure [〈[a1, b1 ]; c1〉, 〈ā1; [b̄1, c̄1 ]〉]. The latter is an S0 structure
(modulo renaming of atoms) and is therefore provable. Again as with S0, it can be shown
that any proof of S1 must begin with an innermost par substructure as the redex. In this
case, the depth of the redex is 4. The S1 structure can be further superimposed with other
S0 structures to produce bigger structures with the same property. A recursive procedure
to produce such structures is given in Section 7. As we shall see later, given any n, this
procedure generates a provable structure with the property that its proofs must begin with
a redex at depth 2n. Thus given any candidate shallow system for , a provable structure
can be generated such that its proofs must start at a depth that is beyond the depth of the
rules in that particular shallow system, and hence cannot be proved in the system.
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[R,T ]
=

〈[◦, R, T ]; ◦〉
↓
〈[b, b̄, R, T ]; ◦〉

↓
〈[b, b̄, R, T ]; [c, c̄]〉

=
〈[b, b̄, R, T, ◦]; [c, c̄]〉

↓
[〈[b, b̄, R, T ]; c〉, 〈◦; c̄〉]

=
[〈[b,R, b̄, T ]; [c, ◦]〉, c̄]

↓
[〈[b,R]; c〉, 〈[b̄, T ]; ◦〉, c̄]

=
[〈[b,R]; c〉, [b̄, T ], c̄]

=
〈◦; [〈[b,R]; c〉, b̄, c̄, T ]〉

↓
〈[a, ā]; [〈[b,R]; c〉, b̄, c̄, T ]〉

↓
[〈a; [b,R]; c〉, 〈ā; [b̄, c̄, T ]〉]

=
[〈〈[a, ◦]; [◦, b, R]〉; c〉, 〈ā; [b̄, c̄, T ]〉]

↓
[〈[〈a; ◦〉, 〈◦; [b,R]〉]; c〉, 〈ā; [b̄, c̄, T ]〉]

= .
[〈[a, b,R]; c〉, 〈ā; [b̄, c̄, T ]〉]

Figure 5: A derivation for the parameterized S0

5. Characterisation of Structures

In this section we consider a different representation for structures, a special kind of
graph called relation webs [Gug02] (originally called traces [Gug99]), which is a generalisa-
tion of series-parallel orders [Möh89]. In this representation, structures can be characterized
by the absence of certain forbidden configurations in their relation webs. This characteri-
sation is useful when we want to study general properties of inference rules. This section
reviews the definitions and the main results concerning relation webs already presented in
[Gug99, Gug02].

Let S be a structure in normal form. The structural relations $S (seq), %S (co-seq), ↓S

(par) and ↑S (co-par) are defined as the smallest sets such that $S , %S , ↓S, ↑S ⊂ ( S) ×
( S) and, for every S′{ }, U and V and for every a in U and b in V , the following hold:

(1) if S = S′〈U ;V 〉 then a $S b and b %S a;
(2) if S = S′ [U, V ] then a ↓S b;
(3) if S = S′(U, V ) then a ↑S b.

To a structure that is not in normal form we associate the structural relations obtained
from any of its normal forms. The quadruple ( S, $S , ↓S , ↑S) is called the relation web
of S, written S . We shall omit the subscripts in $S , %S , ↓S and ↑S when it is clear from
context which structure we refer to. Given two sets of atom occurrences µ and ν, we write
µ $ ν, µ % ν, µ ↓ ν and µ ↑ ν to indicate situations where, for every a in µ and for every b
in ν, they hold, respectively, a $ b, a % b, a ↓ b and a ↑ b. For example, in (〈a, b̄〉, [c̄, d]) we
have the following relations: a $ b̄, a ↑ c̄, a ↑ d, b̄ % a, b̄ ↑ c̄, b̄ ↑ d, c̄ ↑ a, c̄ ↑ b̄, c̄ ↓ d, d ↑ a,
d ↑ b̄, d ↓ c̄.
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a

bd

c

⇒

d

c

a

b ∨

a

b

c

d

∨

a

b

d

c

a

bd

c

∨
a

bd

c

∨ d

c a

b

Figure 6: Square property for $

The following proposition states that all the atoms in a sub-structure are in the same
structural relations with respect to each of the atoms surrounding them:

Proposition 5.1. [Gug02] Given a structure S{R} and two atom occurrences a in S{ }
and b in R, if a $ b (respectively, a % b, a ↓ b, a ↑ b) then a $ c (respectively, a % c, a ↓ c,
a ↑ c) for all the atom occurrences c in R.

Theorem 5.2. [Gug02] Given S and its associated structural relations $, %, ↓ and ↑, the
following properties hold, where a, b, c and d are distinct atom occurrences in S:

1: None of $, %, ↓ and ↑ is reflexive: ¬(a $ a), ¬(a % a), ¬(a ↓ a), ¬(a ↑ a).

2: One and only one among a $ b, a % b, a ↓ b and a ↑ b holds.

3: The relations $ and % are mutually inverse: a $ b ⇔ b % a.

4: The relations $ and % are transitive: (a $ b) ∧ (b $ c) ⇒ a $ c and (a % b) ∧ (b %
c) ⇒ a % c.

5: The relations ↓ and ↑ are symmetric: a ↓ b ⇔ b ↓ a and a ↑ b ⇔ b ↑ a.

6: Triangular property: for σ1,σ2,σ3 ∈ {$ ∪ %, ↓, ↑}, it holds

(a σ1 b) ∧ (b σ2 c) ∧ (c σ3 a) ⇒ (σ1 = σ2) ∨ (σ2 = σ3) ∨ (σ3 = σ1) .

7: Square property:

!
7 (a $ b) ∧ (a $ d) ∧ (c $ d) ⇒ (a $ c) ∨ (b $ c) ∨ (b $ d) ∨

(c $ a) ∨ (c $ b) ∨ (d $ b) ,
↓
7 (a ↓ b) ∧ (a ↓ d) ∧ (c ↓ d) ⇒ (a ↓ c) ∨ (b ↓ c) ∨ (b ↓ d) ,
↑
7 (a ↑ b) ∧ (a ↑ d) ∧ (c ↑ d) ⇒ (a ↑ c) ∨ (b ↑ c) ∨ (b ↑ d) .

Proof. See [Gug02].

It is convenient to use graphical notations when reasoning about relation webs. We use
the following drawings

a b , a b , a b and a b



10 A. TIU

a b

d c

⇒
a b

d c

∨
a b

d c

∨
a b

d c

Figure 7: Square property for ↓

d c

a b

⇒
d c

a b

Figure 8: Inverse square property for ↓

to represent the strutural relations: a $ b (and b % a), a $ b or a % b, a ↓ b and a ↑ b,
respectively. Dashed arrows represent negations of structural relations, e.g.,

a b

means that ¬(a ↓ b).
Theorem 5.2 tells us that certain configurations are absent in relation webs. The most

interesting ones are those that derive from 6 (the triangular property) and 7 (the square
property). The triangular property says that the following configuration is absent in relation
webs:

c

b

a

(5.1)

For a structure with three atom occurrences, it is easy to check that the above configuration
is absent: simply check all possible structures that can be formed from the three atoms. For
the more general case, one needs to consider the cases where the atoms are nested inside
other substructures, e.g., as in [U{a}, 〈V {b};W{c}〉]. Induction on structures is needed in
this case (see [Gug02] for details).

The square property for $ and ↓ are presented graphically in Figure 6 and Figure 7,
respectively. The square property for ↑ is similar to the one for ↓. From the square property,
we can infer, for example, that there is no structure containing the following configuration
in its relation web

a b

c d

.

A useful corollary of Theorem 5.2 is that the square property holds also for some negated
relations.

Corollary 5.3. Inverse square property. Given S and its associated structural relations $,
%, ↓ and ↑, the following properties hold, where a, b, c and d are distinct atom occurrences
in S:

(1) if ¬(a ↓ b), ¬(a ↓ d), ¬(c ↓ d), a ↓ c and b ↓ d then ¬(b ↓ c),
(2) if ¬(a ↑ b), ¬(a ↑ d), ¬(c ↑ d), a ↑ c and b ↑ d then ¬(b ↑ c).
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Proof. We show the case for the ↓ relation, the other case is proved analogously. Suppose
that ¬(a ↓ b), ¬(a ↓ d), ¬(c ↓ d), a ↓ c and b ↓ d hold, but b ↓ c. Then applying the
square property for ↓ in Theorem 5.2, it must be the case that one of the following relations
holds: a ↓ b, a ↓ d, c ↓ d. But either one of them would result in a contradiction with the
assumptions.

Figure 8 shows the graphical representation of the inverse square property for the ↓
relation. Note that the inverse square property for the $ relation, i.e., “if ¬(a $ b), ¬(a $ d),
¬(c $ d), a $ c and b $ d then ¬(b $ c)” does not hold. Consider for instance the structure
〈b; [〈a; c〉, d]〉. Its relation web is the following:

a d

b c

.

We have in the web ¬(a $ b), ¬(a $ d), ¬(c $ d), a $ c and b $ d but b $ c.
The conditions 1 - 7 in Theorem 5.2 turn out to be sufficient for characterizing struc-

tures, that is, every web candidate (i.e., a graph with edges labelled with the relations $, ↓
and ↑) which satisfies the conditions is a relation web (hence a structure). This is proved in
[Gug02] where a non-deterministic algorithm is given to decide whether a web candidate is
a relation web. We shall not go into the details of the general algorithm and its correctness
proof since they are not needed in establishing the main results of this paper. We illustrate
here briefly how one can recover a structure from a given relation web using the algorithm.
The algorithm works by identifying substructures in the relation web, starting from the
smallest ones. At each step of the algorithm, partitions are formed on the web such that
each partition corresponds to a valid (sub)structure. Given a relation web S , the steps to
recover the structure corresponding to the web is as follows:

First step: Form a partition {a} for each atom occurrence a in the web.
Iterative step: Let µ and ν be two distinct partitions (which are valid substructures)

such that all atom occurrences in µ and ν are in the same relations, and for all
a ∈ µ, b ∈ ν and c ∈ S \ (µ ∪ ν), a $ c (respectively, a ↓ c and a ↑ c) iff
b $ c (respectively, b ↓ c and b ↑ c). Merge the partitions µ and ν. Let U be
the corresponding structure of µ and V be the corresponding structure of ν. If µ
and ν are related by ↓ (respectively, $ and ↑) then the corresponding structure for
the merged partition is [U, V ] (respectively, 〈U ;V 〉 and (U, V )). Repeat this step
until no merging is possible. The structure corresponding to the remaining partition
(which should be the relation web S itself) is the structure of the relation web.

Consider for instance the following web:

a f

b e

c d

.

The intermediate partitions produced in the execution of the above algorithm is as follows,
where we represent each partition with its corresponding structure:

(1) a, b, c, d, e, f .
(2) [a, b], c, d, e, f .
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(3) [a, b], c, d, [e, f ].
(4) ([a, b], c), d, [e, f ].
(5) ([a, b], c), 〈d; [e, f ]〉.
(6) [([a, b], c), 〈d; [e, f ]〉].

The above relation web therefore corresponds to the structure [([a, b], c), 〈d; [e, f ]〉].
The following theorem states that relation webs are a canonical representation of struc-

tures.

Theorem 5.4. [Gug02] Two structures are equivalent if and only if they have the same
relation web.

6. Shallow Systems

In the definition of shallow systems to follow, we shall try to be as general as possible
but should also be careful to rule out certain inconsistent rules. An obvious case would be
rules which would allow one to prove A ! B −◦ A " B, for example. Two conditions are
enforced on the definition of candidate shallow systems: a shallow system should have a
notion of cut and cut-elimination property, and further, the inference rules should respect a
certain ordering of logical strength of structural relations. The latter can be seen as a sort
of “subformula” property. We observe the following ordering on the structural relations:
↓ ≺ $ ≺ ↑ and ↓ ≺ % ≺ ↑.

Definition 6.1. Let R and T be two structures such that R '= T and R = T . The
relation R ≺ T holds if for all atom occurrences a and b in R, the following hold:

(1) if a ↓T b then a ↓R b,
(2) if a ↑T b then either one of the following holds: a $R b, a %R b, a ↑R b or a ↓R b,
(3) if a $T b then either a $R b or a ↓R b,
(4) if a %T b then either a %R b or a ↓R b.

We shall now formalize what we mean by shallow inference rules and shallow systems.
For this we define formally the notion of structure schemes, that is, structures containing
variables. Structure scheme is then used in defining rule scheme and the depth of a rule
scheme.

Definition 6.2. We enrich the language of structures in Definition 2.1 with a denumerable
infinite set of structure variables. Structure variables are denoted with A, B and C. The
extended language of structures is defined as follows:

S ::= a | A | ◦ | [ S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | S̄ ,

where a is an atom and A is a structure variable. Structure variables representing atomic
structures will also be denoted with x, y and z. The definitions that apply to structures
without variables apply also to structures with variables. In particular, S now denotes
the set of occurences of atoms and variables in the structure S. Definition 6.1 on the
ordering of structures extends straightforwardly to structures with variables. The set of
structure variables in S is denoted by varsS. A ground structure is a structure that does
not contain any variable. A structure with variables can be instantiated by replacing the
variables with other structures.
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In the following definition of shallow systems, only the logical rules (i.e., the non-
interaction rules) are required to be shallow, while the interaction rules are those of .
Moreover, since the systems that are of interest will be those with cut-elimination property,
we always refer to cut-free systems when we talk about shallow systems.

Definition 6.3. The depth of a structure S is defined as follows:

depthS = max {depth S′{ } | S′{R} = S and R ∈ S}

An inference rule
T

ρ
R

is shallow if R and T are non-unit structures such that R ≺ T

and the variables in each of R and T are pairwise distinct. The depth of ρ is defined as
max (depth R,depth T ).

Notice that the above definition of shallow inference rules excludes the interaction,
contraction and weakening rules. An example of a shallow rule is the following rule

[A, ([B,C ], C ′)]
ρ

[A,B, (C,C ′)]
.

It is a shallow rule with depth 3, which is the depth of the structure in the premise.

Definition 6.4. A shallow system S consists of the rules { ↓, ◦↓} and a set of shallow rules
S

′ such that there exists an n, the depth of S , such that for every rule ρ ∈ S
′, depth ρ ≤ n.

In proving general properties of shallow rules, we shall use the relation webs semantics
to characterize their operations on structures. An application of a non-interaction rule,
seen at the relation webs level, modifies structural relations between atom occurrences in
a structure. The square and triangular properties can be used to infer the effects on the
overall structural relations in the structure. In addition, we also make use of the fact that
there are some structural relations that are not modified by a shallow rule, if they happen
to belong to a substructure that is nested deeper than the depth of the shallow rule. This
is stated in the following lemma.

Definition 6.5. Let
T

ρ
R

be an instance of a rule ρ. The structural relation a σR b, where

a, b ∈ R and σ ∈ {↓, $, ↑}, is preserved by ρ if and only if a, b ∈ T and a σT b.

Lemma 6.6. Let
T

ρ
R

be an instance of a shallow rule ρ of depth n and P be a structure

occuring in R at depth m. If m > n then all the structural relations in P are preserved by
ρ.

Proof. The proof follows straightforwardly from the definition of shallow rules and relation
webs.

7. The Need for Deep Inference

A main part of the proof of the necessity of deep-inference for is the construction of
the class of provable structures which will serve as the counterexample to the completeness
of any given shallow candidate system for . This class of structures is generated from
the structure

S0 = [〈[a, b]; c〉, 〈ā; [b̄, c̄]〉].
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It is done by merging recursively variants of S0 with the innermost par-substructures of the
original structure. The formal definition of this merging process is as follows.

Definition 7.1. A structure R is called flat if all the structural relations between atom
occurrences in R are of the same type. The structure [a1, . . . , an ] is a flat par structure.
Likewise, (a1, . . . , an) and 〈a1; . . . ; an〉 are a flat copar structure and a flat seq structure,
respectively. A unit or an atomic structure can be seen as a flat par structure, flat copar
structure or flat seq structure.

Definition 7.2. Let C be an infinite set of positive atoms and let N∗ be the set of finite
sequences of natural numbers. Elements of N∗ are denoted by u, v, w and z. Concatenation
of two sequences of natural number u and v is denoted by u.v. The set of indexed atoms
is defined as CN∗ = {au | a ∈ C, u ∈ N∗}. Two atoms with different names or indexes are
considered different. The following functions generate a class of structures:

α0(u,R, T ) = [〈[au, bu, R]; cu〉, 〈āu; [b̄u, c̄u, T ]〉]
αn(u,R, T ) = [〈αn−1(u.0, au, [bu, R]); cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉], if n > 0,

where u ∈ N∗, a '= b '= c '= a and R,T are flat par structures. A structure of the form
αn(u,R, T ) is called an αn-structure. We denote with Sn the structure αn(0, ◦, ◦).

Note that the use of indices in naming atoms in the above definition is just to guarantee
the pairwise-distinctness of atoms in the generated structures. In the following discussions,
we shall often drop the indices when it is understood from context that the atoms under
consideration are pairwise distinct.

Recall from the proof in Section 4 that proof search for the structure S0 (and, as we
shall see later, any other Sn) must start with certain innermost redexes in the structure. A
way to show the necessity of deep inference is to show that for each n, any rules that modify
the structural relations in Sn but leave the innermost redexes unchanged would result in an
unprovable structure. However, this would leave us with infinite possible inference rules to
consider. We therefore need a finite characterization of inference rules, which is complete for
the class of structures under consideration. We use the relation web representation for this
purpose. Recall that a (shallow) inference rule, applied to a structure, modifies structural
relations between atom occurrences in the structure. For instance, the following rule

([R,T ], U)
ρ

[R, (T,U)]

can be seen, at the relation web level, as the instruction (reading the rule bottom up):
change all the structural relations between the atom occurrences in R and U to ↑. Of
course, one cannot arbitrarily modify the structural relations in a relation web, since the
resulting web may not correspond to a valid structure. The characterization of structures
in Theorem 5.2 is used to rule out certain invalid operations on the relation webs (i.e., by
showing that certain forbidden configurations would result from them). However, this char-
acterization alone is not enough for showing the necessity of deep inference, since they deal
with structures in general, while we require as well characterization of provable structures.
The following lemma states that there are additional configurations that are absent from
provable structures.
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Lemma 7.3. Let S be a structure consisting of pairwise distinct atoms. If S is provable in
BV then the relation web of S does not contain any of the following configurations:

b b̄

a ā

,
b b̄

a ā

and
b b̄

a ā

.

Proof. Suppose that S is provable in BV but wS contains such configurations, i.e., there
exists atoms a, ā, b, b̄ ∈ occ S that are interrelated as in one of the configurations above.

Take any proof
S

BVΠ . By repeated applications of Proposition 3.5 we can remove all the

atom occurrences from Π, except for the atoms {a, b, ā, b̄}, and obtain the proof
S′

BVΠ′

.

The relation web of S′ must be in one of the configurations above, which correspond to
the structures [(a, b̄), (ā, b)], [〈a; b̄〉, (ā, b)] and [〈a; b̄〉, 〈b; ā〉], respectively. As can be easily
checked, none of these structures are provable in BV, which contradicts the fact that S′ is
provable.

We illustrate here how the characterizations of (provable) structures can be used to show
that S0 can be proved only by modifying the innermost redexes first. This will be shown
using in particular the square and triangular properties and the results from Lemma 7.3,
Lemma 6.6 and Definition 6.1. The relation web of S0 (the indexes are omitted) is the
following:

a ā

b b̄

c c̄

.

Suppose, for example, there is a proof of S0 that starts with a rule ρ of depth 1. Then
by Lemma 6.6, the structural relations a ↓ b and b̄ ↓ c̄ must be preserved by ρ since
they correspond to substructures at depth 2. Assuming the application of ρ is non-trivial,
some other structural relations must be changed. The changing, however, must preserve
provability, which means the par relations between dual atoms must also be preserved.
Given these constraints, any other changes to the structural relations will either result in
a violation of a certain structural property or destroy the provability. For example, if we
change a ↓ c̄ to a ↑ c̄, the triangular and square properties will be violated:

b a

c c̄

.

This idea can be generalised to the case

Sn = [〈[P{a}, Q{b}] ; c〉, 〈ā; [P ′{b̄}, Q′{c̄}]〉].

If we preserve all the structural relations inside [P{a}, Q{b}] and [P ′{b̄}, Q′{c̄}], then all
other structural relations cannot be changed without changing the provability of Sn. This
idea is formalized in Lemma 7.8 and Lemma 7.9.
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Lemma 7.4. For every flat par structures R and T , and for every u ∈ N∗ there exists a
derivation from [R,T ] to αn(u,R, T ) in BV.

Proof. Base Case: α0(u,R, T ) = [〈[au, bu, R]; cu〉, 〈āu; [b̄u, c̄u, T ]〉]. The derivation needed
for this case is given in Figure 5 (modulo some renaming of atoms).

Inductive Case: Assume that
[U, V ]

αi(v, U, V )
BV for all i < n, for all v ∈ N∗ and for all flat

par structures U, V . Then

[R,T ]

[〈[au, bu, R]; cu〉, 〈āu; [b̄u, c̄u, T ]〉]
∆0

[〈[au, bu, R]; cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉]
∆1

αn(u,R, T ) = [〈αn−1(u.0, au, [bu, R]); cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉]
∆2

where ∆0 is the derivation constructed in the base case, and ∆1 and ∆2 are derivations
obtained from induction hypothesis.

Lemma 7.5. For every n, Sn is provable in BV.

Proof. Follows immediately from Lemma 7.4, since Sn = αn(0, ◦, ◦).

Lemma 7.6. There are no substructures of the form [R,R] in Sn.

Proof. Base Case: S0 = α0(0, ◦, ◦) = [〈[a0, b0 ]; c0〉, 〈ā0; [b̄0, c̄0 ]〉], obvious.
Inductive Case: Assume that Sn−1 = αn−1(0, ◦, ◦) has no substructures of the form

[R, R̄]. The change of index from αn−1(0, ◦, ◦) to αn−1(u, ◦, ◦) does not affect the form of
the structure, since all the indexed atoms are distinct by definition. The addition of new
atoms to αn−1(u, ◦, ◦), i.e., αn−1(u,U, V ), does not introduce any new dual substructures,
provided that U and V have no dual atoms and consist of different atoms than αn−1(u, ◦, ◦).
Therefore the structure

Sn = αn(0, ◦, ◦) = [〈αn−1(0.0, a0, b0); c0〉, 〈ā0;αn−1(0.1, b̄0, c̄0)〉]

does not contain any substructures of the form [R, R̄] either.

Lemma 7.7. Every occurrence of α0-structure in αn(u,R, T ) is at depth 2n.

Proof. The base case is obvious. For the inductive case, assume that every occurrence of
α0-structure in αn−1(w,P,Q) is at depth 2(n − 1). Since

αn(u,R, T ) = [〈αn−1(u.0, au, [bu, R]); cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉],

the depth of each α0-structure in αn(u,R, T ) is 2(n − 1) + 2 = 2n.

The next three lemmas are crucial to the proof by contradiction in the main theorem
on the necessity of deep inference.

Lemma 7.8. Let T
ρ

R

S

be a proof in a shallow system S where ρ is a shallow rule. If S

is equivalent to BV and the following conditions hold:
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(a): R consists of pairwise distinct atoms,
(b): wR contains the following configuration:

a ā

b b̄

c c̄

(i)

for some pairwise distinct atoms a, b and c,
(c): a ↓T b and b̄ ↓T c̄,

then the configuration (i) is preserved by ρ.

Proof. Since T is provable, the par links between dual atoms in R must be preserved by ρ.
This, together with conditions (a)-(c), give us the following configuration in wT :

a ā

b b̄

c c̄

We assume above that S is equivalent to BV. By Definition 6.4 and Definition 6.3, we
have that R ≺ T. This means, by Definition 6.1, that if x $R y or x ↑R y then it cannot be
the case that x ↓T y. Therefore it must hold in wT :

a ā

b b̄

c c̄

(ii)

(Recall that the dotted line indicates the negation of the structural relation it represents, in
this case, the par link.) We first show that all par relations x ↓R y in (i) must be preserved,
and then, based on this result we prove that any seq relations x $R y in (i) must also be
preserved.

1.: a ↓T ā, b ↓T b̄, c ↓T c̄, a ↓T b and b̄ ↓T c̄, see diagram (ii).
2.: a ↓T b̄. Suppose that ¬(a ↓T b̄). Adding this information to (ii) we have in wT :

a ā

b b̄

c c̄

. (ii.1)

Take the atoms a, ā, b̄ and c̄. By the inverse square property (Corollary 5.3), we
infer that ¬(a ↓T c̄), as shown in the following figure:

a c̄

ā b̄

=⇒

a c̄

ā b̄

.
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Now we combine this information with (ii.1):

a ā

b b̄

c c̄

. (ii.2)

Take the atoms b, b̄, a and c. By the square property (Theorem 5.2), b ↓T c̄ as
shown below:

b b̄

a c̄

=⇒
b b̄

a c̄

.

This together with (ii.2) yield:

a ā

b b̄

c c̄

. (ii.3)

But if this is the case, T cannot be a valid structure, because
b c̄

a c

violates the

square property. Therefore a ↓ b̄ must hold in T .
3.: a ↓ c̄ in T . Suppose that ¬(a ↓ c̄), following a similar reasoning as in Case 2, we

have (s.p. stands for the (inverse) square property):

a ā

b b̄

c c̄

⇒
b c

a c̄

s.p.
⇒

b c

a c̄

⇒
b b̄

a c̄

s.p.
⇒

b b̄

a c̄

⇒
a b̄

ā c̄

4.: b ↓T ā. Suppose ¬(b ↓T ā). It follows from the results established in cases 1-3 that
in wT :

a ā

b b̄

c c̄

⇒
a c

ā c̄

s.p.
⇒

a c

ā c̄
⇒

ā a

c b

.

5.: b ↓T c̄. This case is analogous to case 2. That is if we suppose that ¬(b ↓T c̄), then
the relation web:

a ā

b b̄

c c̄

.

is isomorphic to (ii.1) in case 2.
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6.: ā ↓T c. Suppose ¬(ā ↓T c). Since a ↓T c, as shown in Case 3, we have the following
forbidden configuration:

a ā

b b̄

c c̄

=⇒
a ā

c c̄

.

We are left with the relations a $R c, b $R c, ā $R b̄ and ā $R c̄. Since the structural
relation $ can change only to ↑, there are 16 possible configurations to consider. By applying
the triangular property, it is easy to see that a ↑T c iff b ↑T c, and that ā ↑T b̄ iff ā ↑T c̄.
This is the case because otherwise we would have the following forbidden configurations:

c

a b

c

a b
and

c̄

ā b̄

c̄

ā b̄

.

Therefore, we need only to consider the following three cases.

7.: a ↑T c, b ↑T c, ā $T b̄ and ā $T c̄.

a ā

b b̄

c c̄

⇒
a c̄

ā c

8.: a $T c, b $T c, ā ↑T b̄ and ā ↑T c̄.

a ā

b b̄

c c̄

⇒
ā c

a c̄

.

9.: a ↑T c, b ↑T c, ā ↑T b̄ and ā ↑T c̄.

a ā

b b̄

c c̄

⇒
a c̄

ā c
.

The configurations in cases 7, 8 and 9 are forbidden by Lemma 7.3, which means that
the relations a $R c, b $R c, ā $R b̄ and ā $R c̄ must be preserved by ρ. Therefore, the
configuration (i) must hold in T .
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Lemma 7.9. Let U
ρ

S{P}

S

be a proof in a shallow system S where ρ is a shallow rule, P

is an αn-structure and S{P} consists of pairwise distinct atoms. If S is equivalent to BV
and all the structural relations in αn−1-substructures of P are preserved by ρ then all the
structural relations in P are also preserved by ρ.

Proof. Let us recall the definition of αn-structure:

P = αn(u,R, T ) = [〈αn−1(u.0, au, [bu, R]); cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉].

All the structural relations in αn−1(u.0, au, [bu, R]) (likewise, αn−1(u.1, b̄u, [c̄u, T ])) are pre-
served by ρ.

Let the variables x, y stand for atoms in occ P . The following case analyses show that
the structural relation between x and y, for all possible values of x and y, must be preserved
by ρ as a consequence of the structural properties of the underlying relation webs of S{P}
and U . We shall use the following abbreviation

P1 = αn−1(u.0, au, [bu, R]), and P2 = αn−1(u.1, b̄u, [c̄u, T ]),

in the case analyses below.

1.: x, y ∈ occP1, or x, y ∈ occ P2, follows immediately from the condition of this
lemma.

2.: x ∈ occ P1, y = cu. It holds in P : x $ y.
a.: x ∈ {au, bu}. The structural relations between the atoms au, bu, cu, āu, b̄u

and c̄u in P are
au āu

bu b̄u

cu c̄u

.

Note that since au, bu ∈ occ P1 and b̄u, c̄u ∈ occP2, and since by assumption
all structral relations inside P1 and P2 are unchanged by ρ, we have au ↓U bu

and b̄u ↓U c̄u. Therefore, by Lemma 7.8, the above configuration is preserved
by ρ.

b.: x '∈ {au, bu}. Then x ↓P au or x ↓P bu, because by Definition 7.2

αn−1(u.0, au, [bu, R]) = [Q1{au}, Q2{bu}],

for some structure contexts Q1{ } and Q2{ }. Depending on whether x ↓P bu

or x ↓P cu, one of the following configurations must hold in P :

x

au cu

or
x

bu cu

.

The relations between x and {au, bu} are preserved by ρ (they all belong to
P1), so it holds in U : x ↓U au or x ↓U bu. The structural relations au $U cu and
bu $U cu must hold as shown in Case 2.a. The structural relation x $U cu must
hold in U , because otherwise x ↑U cu by Definition 6.1 and one of the following
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forbidden configuration would occur in U , depending on whether x ↓U au or
x ↓U bu.

x

au cu

or
x

bu cu

.

3.: x ∈ occ P2, y = āu. It holds in P : y $P x.
a.: x ∈ {b̄u, c̄u}, see Case 2.a.
b.: x '∈ {b̄u, c̄u}, then x ↓U b̄u or x ↓U c̄u. Using a similar argument as in Case 2.b,

we establish that the structural relation āu $U x must hold, because otherwise
the following forbidden configurations would occur in U :

x

āu b̄u

and
x

āu c̄u

which correspond to the cases x ↓U b̄u and x ↓U c̄u, respectively.
4.: x ∈ occ〈P1; cu〉, y ∈ occ〈āu;P2〉.

a.: x ∈ {au, bu, cu}, y ∈ {āu, b̄u, c̄u}, see Case 2.a.
b.: x ∈ {au, bu, cu}, y '∈ {āu, b̄u, c̄u}. Since y ∈ occ P2, by assumption we have ei-

ther y ↓U b̄u or y ↓U c̄u. The strutural relations between atoms in {x, āu, b̄u, c̄u}
are preserved by ρ, as shown in Case 2.a, and the structural relations between
atoms in {y, āu, b̄u, c̄u} are also preserved by ρ, as shown in Case 1 and Case 3.
Therefore, if we change the relation x ↓P y to ¬(x ↓U y), the square property
will be violated, as shown in the following diagrams:

āu y

b̄ux

=⇒
āu y

b̄ux

and
āu y

c̄ux

=⇒
āu y

c̄ux

which correspond to the cases y ↓U b̄u and y ↓U c̄u, respectively.
c.: x '∈ {au, bu, cu}, y ∈ {āu, b̄u, c̄u}. Then it holds in U : x ↓U au or x ↓U bu.

The structural relations between atoms in {x, au, bu, cu} must be preserved by
ρ, as shown in Case 1 and 2, and the structural relations between atoms in
{y, au, bu, cu} must also be preserved as shown in Case 2.a. The changing of
x ↓P y to ¬(x ↓U y) leads to the violation of square property as shown in the
following diagrams:

y au

xcu

=⇒
y au

xcu

and
y bu

xcu

=⇒
y bu

xcu

which correspond to the cases x ↓U au and x ↓U bu, respectively.
d.: x '∈ {au, bu, cu}, y '∈ {āu, b̄u, c̄u}. The structural relations āu ↓P cu, x $P cu,

āu $P y, cu ↓P y and āu ↓P x are preserved by ρ as shown in Case 3, 4.a, 4.b
and 4.c. Therefore, if the relation x ↓P y is changed to ¬(x ↓U y), the square
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property would be violated.

āu y

xcu

=⇒
āu y

xcu

Lemma 7.10. Let U
ρ

S{P}

S

be a proof in a shallow system S , where P is an αn-struture and

ρ is a shallow rule. If S is equivalent to BV and all the structural relations in every α0-
substructure of P are preserved by ρ, then all the structural relations in P are also preserved
by ρ.

Proof. The case where P = α0(u,R, T ) is obvious. So suppose that

P = αn(u,R, T ) = [〈αn−1(u.0, au, [bu, R]); cu〉, 〈āu;αn−1(u.1, b̄u, [c̄u, T ])〉]

By inductive hypothesis, the structural relations in αn−1 substructures of P are preserved by
ρ. This means, by Lemma 7.9, that all the structural relations in P must also be preserved
by ρ.

Theorem 7.11. No shallow system can be equivalent to BV.

Proof. Suppose that there exists a shallow system S which is equivalent to BV. Let n be
the depth of S . Consider the structure Sn+1. By Lemma 7.5, Sn+1 is provable in BV.
Since S is equivalent to BV, there must exist also a proof

T
ρ

Sn+1

S

.

We can assume without loss of generality that the instance of ρ above is non-trivial, i.e.,
T '= Sn+1.

The rule ρ cannot be an interaction rule since by Lemma 7.6 there are no substructures
of the form [R,R] in Sn+1. Therefore it must be a shallow rule with depth at most n. From
Lemma 7.7 all the α0-substructures in Sn+1 are at depth 2(n + 1), so all the structural
relations in any α0-substructures of Sn+1 must be preserved by ρ. But by Lemma 7.10,
this implies that all the structural relations in Sn+1 must also be preserved by ρ, that is,
T = Sn+1, contrary to the assumption that the application of ρ is non-trivial. Therefore,
Sn+1 is not provable in S and consequently, S cannot be equivalent to BV.

8. Conclusion

We have shown that deep inference is necessary for System BV, that is, any restriction
on the depth of the applicability of the rules in BV would result in a strictly less expressive
logical system. This result extends to all conservative extensions of BV, for instance, the
extension of BV with the exponential modalities of linear logic [GS01]. This result also
shows in particular that finding a simple sequent system for BV is challenging, to say the
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least. At the more conceptual level, we hope that it gives sufficient evident that the calculus
of structures, especially deep-inference, is a non-trivial departure from sequent calculus as
a formalism for presenting logics.

System BV is not the only logical system that incorporates both commutative and non-
commutative connectives. Retoré’s Pomset logic [Ret99] achieves the same thing. However,
Pomset logic is based on proof-nets, and its sequentialisation is still an open question. Retoré
uses a presentation of proof-nets called the R&B-directed cographs, which are essentially
relation webs where the par links are implicit except when they connect dual atoms. The
structure S0 defined in Section 7, for example, corresponds to the directed cographs:

a ā

b b̄

c c̄

where the par links are omitted except those connecting dual atoms. The connection be-
tween BV and Pomset logic has been extensively discussed in [Str03], where it is shown a
sound translation from BV to Pomset logic, i.e., every provable structure (hence, relation
webs) in BV corresponds to a proof net in Pomset logic. Our result on the necessity of deep
inference for BV therefore carries over to Pomset logic. That is, certain types of sequent
systems (i.e., those which can be presented as shallow systems) can be ruled out in the
search for the sequentialization of Pomset logic.
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