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Abstract: We analyze nonlinear collective effects near surfaces of semi-
infinite periodic systems with multi-gap transmission spectra and introduce
a novel concept of multi-gap surface solitons as mutually trapped surface
states with the components associated with different spectral gaps. We
find numerically discrete surface modes in semi-infinite binary waveguide
arrays which can support simultaneously two types of discrete solitons, and
analyze different multi-gap states including the soliton-induced waveguides
with the guided modes from different gaps and composite vector solitons.
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1. Introduction

Interfaces separating different physical media can support a special class of transversally lo-
calized waves known as surface waves. Linear surface waves have been studied extensively in
many branches of physics [1], and the structure of surface states in periodic systems is associ-
ated with the specific properties of the corresponding Bloch waves. Such linear surface waves
with staggered profiles are often referred to as Tamm states [2], first identified as localized elec-
tronic states at the edge of a truncated periodic potential, and then found in other systems, e.g.
for an interface separating periodic and homogeneous dielectric optical media [3, 4].

Nonlinear surface waves have been studied most extensively in optics where both TE and TM
surface modes were predicted and analyzed for the interfaces separating two different homoge-
neous nonlinear dielectric media [5, 6, 7]. In addition, nonlinear effects are known to stabilize
surface modes in discrete systems generating different types of states localized at and near
the surface [8]. Self-trapping of light near the boundary of a self-focusing photonic lattice has
recently been predicted theoretically [9] and demonstrated in experiment [10] through the for-
mation of discrete surface solitons at the edge of a waveguide array. Such unstaggered discrete
surface modes can be treated as discrete optical solitons [11] trapped at the edge of a waveguide
array when the beam power exceeds a certain critical value associated with a strong repulsive
surface energy [12]. Staggered surface gap solitons in defocusing semi-infinite periodic media
have also been introduced theoretically [13] and recently observed experimentally [14], and
they provide a direct nonlinear generalization of the familiar electronic surface Tamm states.

So far, unlike the only case of vector discrete nonlinear surface waves [15], discrete sur-
face solitons have been described by scalar fields, and they were associated either with the
semi-infinite total-internal reflection optical gap, such as discrete surface solitons [9], or with
the Bragg-reflection photonic gap, such as surface gap solitons [13], being treated completely
independently. However, as was already shown for infinite nonlinear periodic and discrete sys-
tems [16, 17, 18, 19], nonlinear collective effects in photonic systems with multi-gap transmis-
sion spectra may lead to mutual cross-band focusing effects and can support multi-gap solitons
as composite modes with the components associated with different spectral gaps.

In this paper, we introduce the concept of multi-gap surface waves as composite states con-
sisting of mutually trapped components from different gaps localized at the surface. Such com-
posite surface states can be created either by a surface soliton that traps linear guided modes
from other spectral gaps, or as vector surface solitons with the major components from differ-
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Fig. 1. (a,b) Two types of a semi-infinite binary array truncated at wide or narrow
waveguides. (c) Dispersion diagram of the binary array with the bands shaded and gaps
marked. Detuning between the A and B-type waveguides is ρ = 0.6.

ent gaps. To the best of our knowledge, such states have never been mentioned in any field of
physics, and they become possible due to interaction of multi-gap discrete solitons [17] with
the surface. As a specific example allowing us to demonstrate the basic concept, we consider
here the discrete surface modes in semi-infinite binary waveguide arrays, earlier introduced the-
oretically [20, 21] and then studied experimentally [22], and find numerically different classes
of multi-gap surface states also discussing their existence and stability.

2. Surface discrete solitons in binary arrays

We consider a binary array composed of two types (A and B, wide and narrow) of separated
optical waveguides [20, 21], that can be fabricated by etching waveguides on top of a Al-
GaAs substrate [22]. To study the surface effects, we assume that the array is truncated at either
waveguide, as shown in Figs. 1(a,b). We analyze interactions between several mutually incoher-
ent components with the electric field envelopes E ( j)(x,z). Then, we employ the tight-binding
approximation and present the total field E as a superposition of the guided modes supported
by individual guides, E(x,z) = ∑n[An(z)ψAn(x)+ Bn(z)ψBn(x)]exp(ikz), where we introduce
the vector notations F = (F (1),F (2), . . .). Here ψAn(x) and ψBn(x) are the mode profiles of the

individual waveguides, k is the average propagation constant of A and B modes, and A ( j)
n and

B( j)
n are the mode amplitudes for the field component number j. Finally, we derive a system of

coupled discrete equations [17] for the normalized amplitudes a n and bn,

i
dan

dz
+ ρan +bn−1 +bn + ||an||2an = 0, i

dbn

dz
−ρbn +an +an+1 + ||bn||2bn = 0, (1)

where b0 ≡ 0 or a1 ≡ 0 for arrays terminated at a wide or narrow waveguide, respectively.
We consider the case of a positive Kerr-type medium response proportional to the total field
intensity ||{a,b}n||2 = ∑ j |{a,b}( j)

n |2, neglecting the small differences in the effective nonlinear
coefficients at the A and B sites; ρ is proportional to the detuning between the propagation
constants of the A and B-type guided modes.

According to Eqs. (1), the linear Bloch-wave dispersion is defined as Kb = cos−1(−η/2),
where η = 2 + ρ 2 −β 2. The transmission bands correspond to real Kb, and they appear when
β− ≤ |β | ≤ β+, where β− = |ρ | and β+ = (ρ2 +4)1/2. A characteristic dispersion relation and
the corresponding band-gap structure are presented in Fig. 1(c). The upper gap at β > β + is
due to the effect of total internal reflection (TIR gap), whereas additional BR gap appears for
|β | < β− due do the resonant Bragg reflection.

First, we study scalar discrete surface solitons in the truncated binary arrays and look for
spatially localized solutions of Eqs. (1) in the form (an,bn) = (u2n−1−n0,u2n−n0)exp(iβ z), n =
1,2 . . ., where β is the propagation constant, n0 = 0,1 for the structure termination at the A
or B site, respectively, and the function un describes the soliton profiles. The soliton power
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Fig. 2. (a) Families of the discrete surface solitons in the BR and TIR gaps, and (b,c)
propagation constants of the localized linear modes from the other gaps guided by these
solitons, in the binary array truncated at the narrow waveguide. Dashed curves in (a-c)
mark unstable soliton branches. (d,e) Examples of two types of the discrete surface solitons
(solid) and their guided linear modes localized in the other gaps (dashed), corresponding to
the marked points ”d” and ”e” in (a-c). Detuning parameter of the binary array is ρ = 0.6.

is P = ∑n |un|2. Discrete solitons can appear in the TIR gap, and gap solitons can form inside
the BR gap.

In Figs. 2(a) and 3(a) we summarize our findings and show the results for the families of the
nonlinear surface states for the two different cases. In the first case, when the edge waveguide is
narrow, the nonlinear surface modes start to appear in the BR gap (as the nonlinear Tamm states)
at low powers, whereas the existence of the surface modes in the TIR gap requires the beam
power to exceed some threshold value. In the second case, when the array is truncated at the
wide waveguide, the existence of nonlinear surface modes in both the gaps requires similarly to
exceed a threshold power. We employ the beam propagation method to investigate the soliton
stability. In Figs. 2(a) and 3(a), dashed branches of the curves indicate unstable surface modes.
Whereas oscillatory instabilities [23] may arise for the solid branches, we have verified that the
solitons corresponding to marked points on the solid curves demonstrate stable propagation for
more than 100 coupling lengths even with input perturbations of 1%.

3. Waveguides induced by surface solitons

The mutual trapping of the modes localized in different gaps and the physics of surface multi-
gap vector solitons can be understood in terms of the soliton-induced waveguides. We search
for the linear guided modes supported by a scalar soliton in other gaps, and consider two types
of surface solitons and two different waveguide truncations. In Figs. 2(b,c) and 3(b,c), we plot
the eigenvalues of the linear guided modes supported by the BR (b) and TIR (c) surface solitons,
respectively. In Figs. 2(d,e) and 3(d,e) we show several characteristic examples of the BR and
TIR surface solitons together with linear surface modes they guide in the other gap. We find that
surface solitons may be able to guide linear surface modes, and the number of guided modes
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Fig. 3. Same as in Fig. 2, but for the binary array truncated at the wide waveguide.
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Fig. 4. Examples of surface multi-gap vector solitons for different structure terminations;
solid and dashed curves show the profiles of the soliton components from the TIR and BR
gaps, respectively. For the termination on the narrow site (a), BR component propagation
constant is β = −0.1 and its power is P = 0.9. TIR component has β = 2.6 and P = 1.6.
For the termination on the wide site (b), BR component propagation constant and power
are β = 0 and P = 1.6, respectively, while TIR component has β = 3.0 and P = 4.6.

supported by a soliton-induced surface waveguide depends on the lattice termination and the
soliton distance from the edge, indicating the possibility of the effective engineering of the
interband interactions. For example, in contrast to the case of infinite waveguide arrays where
linear modes are always present [16, 17, 23], in the case of the structure termination on the
A-type (narrow) waveguide stable fundamental TIR solitons do not support BR modes [note
the absence of a solid curve in Fig. 3(c)].

4. Multi-gap surface solitons

When the amplitude of the guided mode grows, the mode interacts with the surface soliton
waveguide creating a coupled multi-gap state in the form of a surface multi-gap vector soliton.
The eigenvalues of the linear guided modes define the point where such vector solitons bifur-
cate from their scalar counterparts [16, 17]. In the vicinity of the bifurcation point, the soliton
symmetry and stability are defined mostly by the large-amplitude soliton component. However,
as the power in the second component grows, the soliton properties change dramatically, and
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Fig. 5. Density plots for the total intensity demonstrating (a,b) nonlinear dynamics of in-
dividual beams incident on the first or second waveguide with input powers P = 1.3 and
P = 2.3, respectively; and (c) generation of a multi-gap state through the combined excita-
tion of the first and second waveguides with the same two mutually incoherent beams. The
array is truncated at a narrow waveguide.

the surface multi-gap vector solitons may demonstrate quite complicated structure and behav-
ior. Figures 4(a,b) show two examples of such two-gap surface solitons found numerically for
the two different truncations of the binary waveguide array. In both cases, the composite state
is created by coupling the components residing in the TIR and BR spectral gaps. Properties of
the surface multi-gap solitons can be engineered by controlling geometry and parameters of the
semi-infinite array. For example, in the case of the termination of the binary array on the wide
site, TIR component of the stable multi-gap soliton has a twisted structure [see Fig. 4(b)] which
reflects the fact that when the array is truncated on the wide site, a fundamental TIR soliton
can not support any guided mode in the other gap [Fig. 3(c)]. We find that these multi-gap soli-
tons are stable for propagation over more than 500 coupling lengths under initial perturbations
on the order of 1%, whereas in the absence of mutual trapping, the individual TIR and BR
components experience breathing and decay.

One of the advantages of binary waveguide arrays is that the preferential excitation of the first
or second spectral bands can be achieved by focusing beams at the wide or narrow waveguides,
respectively. This allows us to suggest a simple scheme for the generation of multi-gap surface
states from two mutually incoherent beams incident at the first and second waveguides, see an
example in Fig. 5(c). The weak oscillations of the total intensity are due to the excitation of
the soliton internal mode, and we have confirmed that the spectrum of propagation constants
β contains dominant components in both the TIR (β � 2.9) and BR (β � 0.1) gaps, realiz-
ing an intermediate state between coherent multi-band breathers [24] and stationary multi-gap
solitons. We emphasize that it is the collective beam trapping that enables the formation of
a nonlinear surface state, whereas individual beams exhibit repulsion from the interface [see
Fig. 5(a,b)].

5. Conclusion

We have introduced a novel type of nonlinear surface waves created by mutual trapping of
several components from different spectral gaps in semi-infinite systems with multi-gap trans-
mission spectra. We have studied surface modes in truncated binary waveguide arrays and
found various multi-gap surface states including the surface soliton-induced waveguides with
the guided modes from different spectral gaps and multi-gap composite vector solitons.
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