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Abstract
Background: The number of k-words shared between two sequences is a simple and effcient
alignment-free sequence comparison method. This statistic, D2, has been used for the clustering of
EST sequences. Sequence comparison based on D2 is extremely fast, its runtime is proportional to
the size of the sequences under scrutiny, whereas alignment-based comparisons have a worst-case
run time proportional to the square of the size. Recent studies have tackled the rigorous study of
the statistical distribution of D2, and asymptotic regimes have been derived. The distribution of
approximate k-word matches has also been studied.

Results: We have computed the D2 optimal word size for various sequence lengths, and for both
perfect and approximate word matches. Kolmogorov-Smirnov tests show D2 to have a compound
Poisson distribution at the optimal word size for small sequence lengths (below 400 letters) and a
normal distribution at the optimal word size for large sequence lengths (above 1600 letters). We
find that the D2 statistic outperforms BLAST in the comparison of artificially evolved sequences,
and performs similarly to other methods based on exact word matches. These results obtained
with randomly generated sequences are also valid for sequences derived from human genomic
DNA.

Conclusion: We have characterized the distribution of the D2 statistic at optimal word sizes. We
find that the best trade-off between computational efficiency and accuracy is obtained with exact
word matches. Given that our numerical tests have not included sequence shuffling, transposition
or splicing, the improvements over existing methods reported here underestimate that expected
in real sequences. Because of the linear run time and of the known normal asymptotic behavior,
D2-based methods are most appropriate for large genomic sequences.
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Background
The overwhelming amount of molecular data generated
by the sequencing of whole genomes and EST libraries has
triggered the development of numerous sequence com-
parison algorithms, aimed at detecting related sequences
and at quantifying this relatedness. BLAST [1], FASTA [2]
and other related algorithm are arguably the most popular
programs for sequence comparison. These algorithms rely
on the local alignment of the sequences under scrutiny
and assume conservation of contiguity between homolo-
gous segments. This assumption, however, is often vio-
lated. Discontinuity can occur, for example, when spliced
transcripts are matched to genomic sequences, when ESTs
or cDNAs from different splice variants are compared or
when genomic sequences are aligned that have undergone
genome shuffling. Other alignment-based algorithms that
do not assume conservation of contiguity, such as BLAT
[3] or SIM4 [4], can compute scores, percentage similarity,
but do not assess statistical significance.

Several types of alignment-free sequence comparison
algorithms, reviewed in [5], can circumvent this problem.
Among these alignment-free methods, techniques based
on the number of k-words shared between two sequences,
also known as the D2 statistic, are particularly noteworthy
due to the speed of their implementation, their sensitivity
and selectivity [6]. They have been extensively used to
structure large collections of ESTs into clusters of similar
sequences [7-9].

The rigorous study of the statistical distribution of D2

began with the computation of bounds of D2 variance and

the characterization of asymptotic distributional regimes
[10]. These results have been refined in a recent study
[11]. Other studies [12,13] have focussed on a generaliza-
tion of D2, the number of approximate k-word matches

between two sequences, , where t is the number of

mismatches per word. Bounds on thevariance and asymp-

totic distribution of  have been determined [13].

The current paper summarizes the theoretical knowledge

on the distribution of D2 and . The optimal word

sizes of these statistics in a variety of conditions were com-
puted, and the distributional regimes at optimal word size

were deduced. Finally, the accuracy of  as a measure

of sequence similarity was compared with other measures
using random sequences and sequences evolved from
human genomic DNA.

Results and Discussion
Word matches measures
Exact matches

The theory developed for the number of exact word
matches between two sequences is widely applicable to
any kind of sequence with the only constraint that these
are made of independent and identically distributed
(i.i.d.) letters. Given an alphabet  of d letters, let A =
A1A2 � An be a sequence of n i.i.d. letters of . Let fa be

the probability of a letter taking the value a, and pk =

.

D2 is defined as the number of k-words matches between
two sequences A and B, and can be expressed

where Y(i, j) is the k-word match indicator variable starting
at position i in A and j in B, and the index set is

I = {(i, j) : 1 ≤ i ≤ , 1 ≤ j }

where, for convenience, (n - k + 1) and (m - k + 1) are writ-
ten  and  respectively.

D2 can also be thought of as an inner product of the word

count vectors. Let  = {w1, w2, �, wn} be the set of all

k-words on . For w ∈ , let  be the number of

times the letter w appears in sequence A. The count vector

for that sequence is . D2 can

thus also be expressed as

The mean of D2 can be easily computed (e.g. [14])

When the letters of the alphabet are uniformly distrib-

uted, that is, fa = , for all a ∈ A.
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Lower and upper bounds for the variance of D2 were com-

puted in [10], and an exact formula for the variance in the
case of uniform letter distribution was given in [11]. Lim-
iting distributions of D2 when n and k get large were

derived in [10], namely (a) when k/ n > 2, and E[D2]

is not too small, D2 has a compound Poisson [15] asymp-

totic behaviour, and (b) when k/ n < 1/6, and the

letter distribution is non-uniform, D2 has a normal

asymptotic behaviour. Numerical simulations in [10]
showed that these theoretical bounds are not tight. The
uniform letter distribution case was studied in [11], where
it was proved that, for large enough k, the D2 statistic is

approximately normal as n gets large.

Approximate matches
The theory for the number of approximate matches
between two sequences has been developed in the more
restricted framework of strand symmetric Bernoulli text
[12,13]. In this framework, the letters are i.i.d. with fre-
quencies

where η is the perturbation parameter, with -1 ≥ η ≥ 1. The
distance between two words x and y of length k is defined
as the number of character mismatches between x and y
and is written δ(x, y). When δ(x, y) ≥ t, x is said to be a t-
neighbour of y. If A is a strand symmetric Bernoulli text
and w is a known word of the same length, n, as A, then
the probability distribution of the distance δ(A, w) is:

Pr(δ(A, w) = t) =gt(n,η,c)

where gt is a perturbed binomial distribution [12], c is the
GC count in w and η is the perturbation parameter of A.
The cumulative distribution function of the distance is
then

The  statistic is defined to be the number of t-neigh-

bours of k-words between sequences A and B, and can be
expressed as

where  is the indicator variable of t-neighbourhood

for the k-words starting at position i in A and j in B. The

expectation of  can be expressed in terms of the per-

turbed binomial distribution [12]

Upper and lower bounds for the variance of  were

computed in [13], and the following limit deduced: for

large n,  is asymptotically normal when k =

α (n) + C where 0 ≥ α <  and C is a constant. When

t = 0, this result is an improvement on the α = 1/6 result
for perfect matches [10] reported above. Numerical simu-
lations in [13] suggest that this asymptotic behaviour

occurs for α as high as 2.

The results of the numerical simulations comparing the

distribution of  to a normal distribution, for various

word sizes, sequences sizes and number of mismatches, in
the case of non-uniform letters distribution, are shown in
figure 1. Similar tables comparing D2 to the normal and

compound Poisson distribution, in the case of exact word
matches, for uniform and non-uniform letters distribu-
tion, can be found in [10].

Optimal word sizes

Our first goal is to characterize the distribution regime of

 when the word size is optimal. We write  the

optimal word size for sequences of size n and t mis-
matches. Numerical simulations were carried out to deter-

mine  for various sequence lengths n = 2x × 102 with x

= 1, 2, 3, 4, 5, and for different numbers of mismatches t
= 0, 1, 2, 3, 4, 5. A summary of these simulations is given
in table 1 and the detailed simulation results can be found
in additional files 1 to 9. Sequences with a non-uniform
letter distribution were used, with nucleotide frequencies
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Kolmogorov-Smirnov p values for non-uniform  compared with normalFigure 1

Kolmogorov-Smirnov p values for non-uniform compared with normal. (adapted from [13]) The letter distri-

bution is fA = fT= , fG = fC = , and the diagonal red line in each table is k = 2 n + const.
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observed in several sequenced genomes, such as the
honey bee Apis mellifera, the roundworm Caenorhabditis
elegans or the zebra fish Danio rerio. The optimal word size
was also computed in the uniform case for t = 0, 3, with
very similar outcomes. We will therefore focus our discus-
sion on the non-uniform case.

Regardless of the number of mismatches, the optimal
word size is quite stable when the lengths of the sequences
vary across the range of sizes under consideration. We

only noticed a slight decrease in  for sequences smaller

than 400 letters (see table 1). The behaviour of ,

however, can traverse different distribution regimes when
the sequence length varies and the word size is fixed.

When our data for perfect word matches are compared to
tables 1 and 3 in [10], it appears that the distribution of
D2 at optimal word size is approximately a compound
Poisson distribution when sequences are 400 letters long
or smaller, and is approximately normal when sequences
lengths are larger than 1600 letters.

In the case of approximate word matches, it can be extrap-

olated from figure 1 that the distribution of 

becomes normal for sequences larger than 1600 letters.

The approximate behaviour of , when t > 0 and k/

n > 2, however, is unknown. The distribution

regime of  at optimal word size for smaller sequences

could therefore not be characterized.

Accuracy of  measures

A previous study [16] compared the accuracy of various
dissimilarity measures based on the number of words
shared between 2 sequences. These authors give the values

of the Spearman's rank statistic, A (see methods),
obtained with these measures and compare them with
that obtained using either BLAST or the Hamming dis-

tance. Similarly, we compared the efficiency of  for

different numbers of mismatches, t = 0,1, 2, 3, 4, 5 (figure
2). We used the same sequence size (600) as inthe above-
cited study so as to allow comparison of the performance

of  with the measures assessed in that study. A for

BLAST was computed based on the bit scores obtained
with the default settings.

Overall, the  measures provide an accuracy similar to

the dissimilarity measures computed in [16], with log (A)
ranging from 9.3 to 9.6. This is better than BLAST whose
log (A) is close to 9.9. It is noteworthy that, at optimal

word size, the  statistic gives better results when the

number of mismatches allowed per word increases.

Application to non-iid sequences

In real biological sequences, letters are not independent
and identically distributed. To test the applicability of our
results to biological sequences, we conducted similar sim-
ulations, but instead of randomly generated sequences of
known composition, we used sequences sampled from
the human genome and made them evolve according to
the K80 [17] model of nucleotide substitutions. The
results are summarized in additional file 9. These results
are quite encouraging in many respects. First, the optimal
word sizes for these sequences are the same as or very
close to the ones predicted with random sequences in the
previous sections. The values of log (A) for near-optimum
word sizes are lower than those computed previously, sug-
gesting that similarity measures based on word counts
may be more accurate on real sequences than on ran-
domly generated sequences. Finally, the accuracy of the

 measures near optimal word size are consistently
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Table 1: Optimal word sizes. Optimal word sizes for various sequence lengths and numbers of mismatches.

Mismatches Sequence length
200 400 800 1600 3200

0 6 7 7 7 7
1 8 10 10 10 10
2 10 12 12 12 12
3 12 14 14 14 14
4 14 16 16 16 16
5 16 18 18 18 18
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Effect of the number of mismatches on the accuracy of Figure 2

Effect of the number of mismatches on the accuracy of . The curves show the accuracy of the  statistics 

according to the word length and for various mismatches per word. In this simulation, sequence sizes of 600 letters were used. 
The dotted line shows the results obtained with BLAST.
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better than BLAST bit scores obtained with the default set-
tings.

Conclusion

The  statistic has different distribution regimes

depending on the word size k, the sequences lengths n, the
number of mismatches t and the sequence composition
fATGC. We computed the optimal word size for various

combinations of these parameters that influence the dis-

tribution of . For sequences smaller than 400 letters

and when no mismatches are allowed, the distribution of

 is close to a compound Poisson. In the case of

sequence larger than 1600 letters, the distribution of

 is approximately normal. When estimating the sig-

nificance of sequence similarity using  at its optimal

word size, the null distribution would thus have to be
adjusted according to the size of the sequences. It is worth
noting that the size of typical ESTs or whole genome shot-
gun sequencing traces (500–800 letters) is in the transi-
tion region between these two limiting distributions.

We have also shown that the accuracy of the  statistic

is similar to that of other similarity measures based on the
number of words shared between two sequences. In par-
ticular, allowing for mismatches between words increases

the accuracy of the . This improvement, however,

comes at a high computation cost. The algorithmic com-

plexity of  is o(kn), when t = 0, however, when t > 0,

the worst case complexity is o(knm). In our simulations,

 was more accurate than BLAST (see figure 2). We

expect this difference to be accentuated on real sequences
where shuffling and transposition occurs, breaking the
contiguity generally assumed by alignment-based
sequence comparison algorithms.

The assumption of i.i.d. distributed letters made to ease

the characterization of the  distribution may not

hold in real sequences. This may have an impact on the
assessment of the statistical significance of the number of
words shared between two sequences. The optimal word
sizes computed in this study, however, seem to be valid

for real sequences evolved under a relatively realistic
model of nucleotides substitution.

Taken together, the statistical theory, the algorithmic com-
plexity and the simulation results suggest that the best

application of the  statistics would be the identifica-

tion of similarities between large genomic sequences
using exact word matches. Comparison of such sequences
using alignment-based methods is computationally
expensive, since these algorithms typically have a o(n2)
complexity, hence the development of heuristics speeding
up these comparisons, such as BLAT [3] or MEGABLAST

[18]. The linear (o(n)) nature of the  algorithm and

the normal asymptotic behavior of , when sequences

are large compared to word size, would allow sequence
similarity to be assessed in a rigorous statistical frame-
work, with significant improvement in run time.

Finally, the known asymptotic behavior of the  statis-

tic could be used to improve the assessment of significant
matches during the initial (search) stage of existing align-
ment algorithms such as BLAST or BLAT.

The use of  in the context of biological sequences is

not limited to the sequence comparison discussed in this
paper. It has been proposed that it could be used to
choose discriminative microarray probes [12]. Other pos-
sible applications may include the detection of transcrip-
tion factor binding sites, microRNAs and dsRNA targets.

Methods
Word size optimization

The optimization of the word size, for a given sequence
length and number of mismatches, was carried out
according to a method similar to that introduced in [16].
In brief, a family of sequences was generated by first creat-
ing a random mother sequence. 100 sons were then

derived by mutating γ% of the mother sequence, where γ
= 1, 2, . . ., 100%. Only point mutations were used: substi-

tution, insertion and deletion of a single letter. The 

statistic between the mother and each son were com-
puted. Two rankings of the sons were then produced, one

based on , and another based on γ. The accuracy of

-based sequence comparison was estimated by look-
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ing at the discrepancy between these two rankings by
means of the Spearman's rank statistic A. The optimal
word size is that for which A is minimal. For each condi-
tion, the data presented here are the average of A for 100
to 400 families.

Similar simulations were also carried out by randomly
selecting a mother sequence from the human genome
chromosome 1, version NCBI36.40 (available from http:/
/www.ensembl.org). Sons where then derived according
to a K80 [17] model of evolution.

A program written in ANSI C was written to compute the
spearmanRS statistic. Data were post-processed using the R
environment. The simulations were carried out on a
Debian Gnu/Linux desktop computer. The source code is
available from our k-words website [19].

Fit to the normal distribution

Kolmogorov-Smirnov p-values [20] for the standardized

statistic  compared

with the standard normal distribution for sample sizes of
2,500 sequence pairs were computed. The results are
shown in figure 1. In general, samples which are a close
approximation to the normal distribution have p-values
distributed uniformly in the interval [0, 1], whereas sam-
ples which are a poor approximation have small p-values.
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